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1 Introduction

This paper1 describes a novel approach to the task of realization ranking, i.e. the
choice among competing paraphrases for a given input semantics, as produced by
a generation system. We also introduce a notion of symmetric treebanks, which we
define as the combination of (a) a set of pairings of surface forms and associated
semantics plus (b) the sets of alternative analyses for the surface form and sets of
alternate realizations of the semantics. For inclusion of alternate analyses and re-
alizations in the symmetric treebank, we propose to make the underlying linguistic
theory explicit and operational, viz. in the form of a broad-coverage computational
grammar. Extending earlier work on grammar-based treebanks in the Redwoods
(Oepen et al. [13]) paradigm, we present a fully automated procedure to produce
a symmetric treebank from existing resources. To evaluate the utility of an initial
(albeit smallish) such ‘expanded’ treebank, we report on experimental results for
training stochastic discriminative models for the realization ranking task.

Our work is set within the context of a Norwegian–English machine translation
project (LOGON; Oepen et al. [11]). The LOGON system builds on a relatively con-
ventional semantic transfer architecture—based on Minimal Recursion Semantics
(MRS; Copestake et al. [5])—and quite generally aims to combine a ‘deep’ linguis-
tic backbone with stochastic processes for ambiguity management and improved
robustness. In this paper we focus on the isolated subtask of ranking the output of
the target language generator.

For target language realization, LOGON uses the LinGO English Resource
Grammar (ERG; Flickinger [6]) and LKB generator, a lexically-driven chart gen-
erator that accepts MRS-style input semantics (Carroll et al. [2]). Over a represen-
tative LOGON data set, the generator already produces an average of 45 English
realizations per input MRS; see Figure 1 for an example. As we expect to move to

1We would like to thank Mark Johnson (Brown University) and Rob Malouf (San Diego State
University) for many fruitful discussions and their comments on earlier drafts and ideas presented in
this paper.



remember that dogs must be on a leash
remember dogs must be on a leash
on a leash remember that dogs must be
on a leash remember dogs must be
a leash remember that dogs must be on
a leash remember dogs must be on
dogs remember must be on a leash

if you come with the morning boat you can start the trip the same day.
if you come with the morning boat the trip you can start the same day.
if you come with the morning boat the same day you can start the trip.
the trip you can start the same day if you come with the morning boat.
you can start the trip the same day if you come with the morning boat.
the same day you can start the trip if you come with the morning boat.

Figure 1: Example sets of generator outputs using the LinGO ERG. Unless the input se-
mantics is specified for aspects of information structure (e.g. requresting foregrounding
of a specific entity), paraphrases will include all grammatically legitimate topicalizations.
Other sources of generator ambiguity include, for example, the optionality of comple-
mentizers and relative pronouns, permutation of (intersective) modifiers, and lexical and
orthographic alternations.

generation from packed, ambiguous transfer outputs, the degree of generator am-
biguity will further increase. It is therefore essential for end-to-end MT to have a
scalable means of ranking generator outputs and ultimately selecting one (or a few)
preferred realizations.

In this paper we explore the use of discriminative log-linear models, or max-
imum entropy models, for ranking the realizations and propose an extended and
symmetric notion of treebanks for the supervised learning task. This means that
we treat the optimality relation encoded in each treebanked 〈utterance, analysis〉
pair as being bidirectional, and use the underlying grammar to generate all of their
possible paraphrases. This provides us with all the admissible realizations for a set
of input semantics, each accompanied with an indication of the preferred candi-
date(s).2

The next section further elaborates on the problem of realization ranking as
well as the issue of symmetrizing and extending the treebank data. In section 4
we describe the log-linear models that are trained using structural features of the
paraphrase data. We also compare the performance of the log-linear models to that
of a simple n-gram language model, as well as to a hybrid model that combines
the two. The experiments using the language models are described in section 3.

2The utility of this kind of resource is by no means restricted to our MT setting, but should
prove relevant for other applications that generates from semantic representations. Furthermore, the
ability to generate paraphrases of a given input seems potentially beneficial to other tasks too, as, for
example, question-answering (QA) and summarization systems.



2 Bidirectionality of Treebank Data

Our perspective on the task of realization ranking is given by recognizing its sim-
ilarity to the task of parse selection. As described below, selecting among the
analyses delivered by a parser can be seen as the inverse of task of the realiza-
tion ranking. The results reported by Oepen et al. [13] on the construction of the
HPSG Redwoods treebanks and associated parse selection models provides us with
a starting point in this respect, both in terms of the methodology used and available
data sets.

When training a model for the task of parse selection (i.e. choosing among
competing analyses of a token utterance), the distribution that one is typically in-
terested in is the conditional probability of an analysis given a string. Moreover,
this typically requires training data that consists of all possible analyses for a set of
strings, where the goal is to estimate a distribution that for each string maximizes
the probability of the preferred analysis over all the other competing candidates.

For the task of realization ranking (i.e. choosing among multiple paraphrases
of a meaning representation input to the generator), on the other hand, we are
interested in a different distribution. In order to select the best realization(s) we
need a model that gives us the probability of a string given its semantics.

A treebank is traditionally conceived as a set of utterances (typically strings)
paired with their optimal or correct analyses. In this paper we take the optimal-
ity relation that these pairs encode to be bidirectional or symmetric, in the sense
that the original utterance can also be treated as an optimal realization of the cor-
responding semantic analysis (i.e. ‘meaning’). The remaining part of this sec-
tion looks at how we can exploit this bidirectionality or symmetry of the recorded
〈utterance, analysis〉 pairs to construct all the possible paraphrases for the tree-
banked items. This will provide us with the necessary training data to learn the
discriminative models described in section 4.

The Redwoods treebank3 is a collection of HPSG analyses derived from the
LinGO ERG for various domain corpora (e.g. transcribed scheduling dialogues,
ecommerce email, and lately tourism text), with manual annotation to identify the
intended parse(s) for each utterance. Since (a) the Redwoods treebank provides a
full HPSG sign for each input item and (b) the ERG analyses incorporate an MRS-
style semantic component into HPSG, we have the option of using the semantics
associated with each preferred analysis for subsequent generation.

Note that the Redwoods approach to treebanking—viz. the construction of the
treebank by virtue of selecting among the analyses provided by a broad-coverage
computational grammar—already includes alternate (‘competing’ but dis-preferred)
analyses for a token utterance as first class data. While this extension to a conven-
tional conception of treebanks as only providing the ‘optimal’ 〈utterance, analysis〉
pairs clearly benefits stochastic parse selection research, it would seem possible in

3See ‘http://redwoods.stanford.edu/’ for further information on the Redwoods ini-
tiative and access to the data available to date. The Redwoods treebank is available under an open-
source license and currently comprises some 15,000 annotated utterances.



theory at least that statistical parsing work—aiming to induce a grammar from the
treebanked analyses, rather than using the ERG—could derive value from the addi-
tional data. Likewise, viewing a treebank as a repository of linguistic information,
the availability of dis-preferred analyses might turn out useful to researchers in
(formal) grammar or linguistic students. The proposal of the current paper is to
further augment the treebank by the inverse correspondence: with regard to the
explicit linguistic model underlying the treebank (i.e. the grammar used to build
it), the paraphrase step aims to provide the mirror image of the dis-preferred anal-
yses, this time making alternative but sub-optimal realizations first class data to be
included in the treebank.

The actual procedure is straightforward. Given a Redwoods treebank, for each
analysis that has been manually marked as the correct reading, we exhaustively
generate all possible realizations for its semantics. In other words, for each string
(and its hand-annotated intended meaning) in the original treebank, all semanti-
cally equivalent paraphrases admitted by the grammar are generated.

The next step is to automatically identify and mark the preferred realization(s).
This is done by matching the yields of the generated trees against the original
strings in the parse treebank, where all derivations yielding this preferred surface
string are counted as equally good candidates. We now have a data set that includes
all possible paraphrases for each treebanked semantic representation, with the best
realization(s) marked. Note that, the grammaticality of all the candidates is guar-
anteed by the generator with respect to the input grammar. Furthermore, the fact
that the Redwoods approach provides a treebank that is built on a grammar (and not
the other way around) means that our data can be dynamically updated to reflect
developments and improvements as the grammar is revised, i.e. as the grammar
evolves there is a semi-automated procedure to (re-)synchronize the treebank with
a new set of analyses provided by the grammar (see Oepen et al. [12] for details).

As mentioned initially, the strategy described here for utilizing treebanks comes
with the underlying assumption that, without introducing too much distortion, the
original string associated with a given reference analysis (in the ‘parse treebank’),
can also reasonably be taken to be an optimal way of expressing the correspond-
ing meaning. After all, by the fact that a sentence is observed to occur naturally
in our semantically annotated corpus (i.e. treebank), we are in some sense already
making the assumption that a presumably rational and competent language user
chose this very utterance to express the given semantics. Granting real language
users some authority when it comes to formulating expressions that in an effective
and natural-sounding way convey the meaning that they want to communicate, this
does not seem like a too radical proposition.

2.1 Data and Evaluation

In the following we report on a preliminary investigation into the utility of such
a set of paraphrases in a symmetric treebank for some 300 sentences from the
LOGON domain—hiking instructions in Norway. The (relatively small) symmetric



items words readingsAggregate
] φ φ

100 ≤ readings 19 19.7 422.9
50 ≤ readings < 100 17 17.8 71.7
10 ≤ readings < 50 72 13.7 22.6
1 < readings < 10 153 10.4 4.8

Total 261 12.4 44.5

Table 1: Some core metrics for the symmetric treebank data used in our initial experi-
ments, broken down by degrees of ambiguity in generation. The columns are, from left
to right, the subdivision of the data according to the number of realizations, total num-
ber of items scored (excluding items with only one realization), average string length, and
average structural ambiguity.

treebank data that we had available for these initial experiments is summarized in
Table 1. Although the total number of items in the treebank is above 300, when
reporting results for our realization ranking experiments we exclude items that are
unambiguous in generation and hence do not present a realization ranking problem.

Before we in section 4 go into the details of using log-linear models trained us-
ing structural features of the paraphrased treebank data, section 3 reports on some
experiments that take a purely surface-oriented approach to the ranking task. The
simple n-gram model presented here will not only serve as a baseline for experi-
mental results obtained for the initial log-linear model, but will also be incorporated
as one of the features in a final combined model.

All models are evaluated according to two different measures; exact match
accuracy and the similarity-based BLEU score (Papineni et al. [15]). The exact
match measure simply counts the number of top-ranked sentences, according to
some model, that exactly matches a corresponding “gold” or reference sentence.
In other words, after a model has been applied to all possible paraphrases in the
symmetric treebank, we count the number of times that the model assigns the best
score to (one of) the string(s) marked as preferred in the symmetric treebank. The
similarity-based and less rigid BLEU measure has gained a well-established role as
an evaluation metric in MT, and is modeled after the word error rate measure used
in speech recognition. The score is computed as a weighted average of the n-gram
precision of the selected candidate realization with respect to the reference, for all
1 ≤ n ≤ 4. When evaluating a models performance on the test data, we report
the averaged BLEU scores over all realizations ranked best by the model, which
has a constant range in [0, 1]. Although it may be hard to intuitively interpret this
precision-based measure in isolation, it at least offers an alternative view when
comparing the relative performance of the various models that we now turn to
describe. For more information on the BLEU scoring metric, see Papineni et al.
[15].



3 N-Gram Language Models

As a first shot at ranking the generator outputs, we order the English target strings
with respect to the probabilities assigned by a simple n-gram language model.

An n-gram model relies on the Markov assumption that the probability of a
given word only depends on the n− 1 words preceding it, and so the probability of
a sequence (w1, . . . , wk) is computed as

(1) pn(w1, . . . , wk) =

k∏

i=1

p(wi|wi−n, . . . , wi−1)

In MT applications, the idea of choosing the most fluent string as the best trans-
lation is a commonly used technique (see, among others, Langkilde and Knight
[8], and Callison-Burch and Flournoy [1]). Using the CMU-SLM Toolkit (Clark-
son and Rosenfeld [4]), various n-gram language models were trained on a plain
(unannotated) text version of the British National Corpus (BNC), containing ap-
proximately 100 million words.

For the experiments reported in this paper, we use 4-gram model trained with
Witten-Bell discounting, a vocabulary of 65,000 words, sentence boundary context
cues, and using back-off to lower-order models for unobserved n-grams. When
applying the language model to the ranking task we obtain close to fifty per cent
exact match accuracy (see Table 2). This result improves significantly over a sev-
enteen per cent random choice baseline. The same holds for the similarity-based
evaluation in Table 3.

We also tried ranking the realizations by their cross-entropy or perplexity with
respect to the language model. Of course, this setting is quite far from the typical
model evaluation setting in which perplexity scores are computed (as an asymptotic
approximation) over an entire test corpus for assessing the quality of a model. On
the sentence level the usual approximation to the perplexity essentially indicates
the average log probability of the words:

(2) 2−
1

k
log pn(w1,...,wk)

Using these scores, however, gave somewhat inferior performance compared to
using the (negative log) probabilities directly. Furthermore, we also saw that in-
creasing the value of n, as well as increasing the vocabulary size, always lead to
better performance in our ranking task, although at the expense of larger models.

The basic underlying assumption of the approach described in this section, is
that the best realization of the input semantics corresponds to the most fluent string.
This implies that we rank outputs as isolated strings rather than as realizations
of a given semantic representation. Another obvious limitation inherent to the
simple n-gram approach described here is the fact that it cannot capture long-range
dependencies.



4 Log-Linear Models

Taking inspiration from contemporary parse selection work, we here describe con-
ditional log-linear models that take into account structural features of competing
realizations for a given input MRS. The family of maximum entropy models or log-
linear models provides a general framework that allows one to combine disparate
and overlapping sources of information in a single model without making unwar-
ranted independence assumptions. A model is given in terms of specified feature
functions describing the data points, and an associated set of learned weights that
determine the contribution or importance of each feature. Each event—in our case
a realization r ∈ Ω—is mapped to a feature vector f(r) ∈ <d, and a vector of
weights λ ∈ <d is then fitted to optimize some objective function. A conditional
log-linear model for the probability of a realization r given the semantics s, has the
form

pλ(r|s) =
1

Z(s)
exp(λ · f(r))(3)

where Z(s) is a normalization factor defined as

(4) Z(s) =
∑

r′∈Y (s)

exp(λ · f(r′))

When computing the so-called partition function Z(s) as in equation (4) above,
Y (s) gives the set of all possible realizations of s. The weight vector λ is chosen
as to maximize the (log of) a penalized likelihood function as in

(5) λ̂ = arg max
λ

log L(λ) −

∑d
i=1 λ2

i

2σ2

where L(λ) is the pseudo-likelihood of the training data (as described by Johnson
et al. [7]), computed as

(6) L(λ) =
N∏

i=1

pλ(ri|si)

In accordance with current best practice, the second term of the objective function
in (5) defines a zero mean Gaussian prior on the weight parameters (Chen and
Rosenfeld [3], Johnson et al. [7], Malouf and van Noord [10]). By promoting less
extreme parameter values this penalty term can reduce the tendency of log-linear
models to over-fit the training data. In addition to improving accuracy, this kind
of smoothing tends to also reduce the number of iterations needed for convergence
during estimation (Malouf and van Noord [10]). We empirically determined a
suitable value for the variance σ2 which is uniformly set to 100 for the results
reported here. Note that the value of the variance parameter determines the relative



random n-gram MaxEnt combinedAggregate
% % % %

100 ≤ readings 0.4 10.5 21.1 31.6
50 ≤ readings < 100 1.5 17.7 22.1 29.4
10 ≤ readings < 50 5.4 38.2 31.6 37.5
1 < readings < 10 27.0 62.8 68.2 75.8

Total 17.2 49.2 51.7 59.0

Table 2: Realization ranking accuracies for a random-choice baseline model, 4-gram lan-
guage model, simple conditional model, and combination of the two. The columns are,
from left to right, the subdivision of the data according to degrees of ambiguity, followed
by exact match accuracies for the four models.

random n-gram MaxEnt combinedAggregate
% % % %

100 ≤ readings 0.5869 0.7209 0.7023 0.7534
50 ≤ readings < 100 0.5956 0.7751 0.7939 0.7790
10 ≤ readings < 50 0.6418 0.7985 0.8293 0.8172
1 < readings < 10 0.7382 0.8792 0.9178 0.9316

Total 0.6913 0.8386 0.8696 0.8771

Table 3: Realization similarity measures for a random-choice baseline model, 4-gram lan-
guage model, simple conditional model, and combination of the two. The columns are,
from left to right, the subdivision of the data according to degrees of ambiguity, followed
by averaged BLEU scores of the realization(s) ranked best by each of the four models.

contribution of the prior and the likelihood function, and thereby the degree of
smoothing (Malouf and van Noord [10]).

For the parse selection task, Toutanova and Manning [16] train a discrimina-
tive log-linear model with features defined over ERG derivation trees, where labels
identify specific construction types and fine-grained lexical classes. For our own
initial experiments with the realization ranking we define the feature set in the
same way (the basic PCFG-S model of Toutanova and Manning [16]), using the
estimate open-source package (Malouf [9]) for parameter estimation (using the
limited-memory variable metric). With only around 300 training sentences in our
current generation treebank and ten-fold cross validation (which tends to underes-
timate model performance), this simplest of log-linear models performs competi-
tively to the language model trained on the BNC (see Tables 2 and 3).

As a third model we augmented the log-linear model with an extra feature
corresponding to the sentence probabilities of the language model (described in
section 3). The value of the d + 1’th feature is the (negative log) probability of
the string as given by the n-gram model pn, i.e. fd+1(r) = −log pn(y(r)), where
y(r) is the yield of r and n = 4 as before. Unsurprisingly, the combined model
significantly outperforms both the previously described models.



5 Discussion and Outlook

For the relatively coherent LOGON domain at least, a tiny training set of some
300 automatically ‘annotated’ paraphrases combined with a discriminative base-
line model originally proposed for the parse selection task outperforms a language
model trained on all of the BNC. Our results suggest that this use of domain-
specific treebanks—and the underlying assumption of relative ‘naturalness’ of the
original, corpus-attested realizations—provide a good handle on ranking generator
outputs, and that structural, linguistic information as is available to the log-linear
model is of central importance for this task. We are currently extending the size of
the available treebank for the LOGON domain (to some 1,500 utterances initially
and ultimately to at least 5,000 annotated items) and expect that the larger training
set—combined with more systematic experimentation with discriminative models
using larger and more specialized feature sets—should allow us to improve exact
match accuracy significantly, ideally to around eighty per cent exact match as are
the currently best available parse selection results.

Additionally, we plan to formalize a notion of graded acceptability of com-
peting realizations (based on string similarity metrics, e.g. BLEU or string ker-
nels) and refine both model training and evaluation in this respect. Unlike in parse
selection—where distinct system outputs typically have distinct semantics—in re-
alization ranking there is more of a graded continuum of more or less natural ver-
balizations (given available information). All outputs are guaranteed by the gram-
mar to be semantically equivalent and grammatically well-formed. This means that
the kind properties we aim at capturing with the discriminative model rather are soft
constraints that govern the graded degree preference among the competing para-
phrases. The approach described by Osborne [14] and Malouf and van Noord [10]
for scoring the training instances (parses in both cases) according to some mea-
sure of preference, and defining the empirical distributions based on these weights,
seems like a well-suited approach for dealing with generation outputs too, where
the notion of correctness may be inherently fleeting.

To investigate the degree of domain-specificity in stochastic models derived
from Redwoods-style symmetric treebanks, we plan to automatically paraphrase
additional segments of the available Redwoods treebank and perform cross-domain
realization ranking experiments.
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