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Motivation
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The problem: Training data is biased 

the CROSS-DOMAIN GULF



The problem: Training data is scarce 
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Goal: Robust processing

• Exploit unlabeled data to improve NLP across 
domains and across languages  

• Possible methods: 

• unsupervised domain adaptation (e.g. exploiting 
unlabeled data clustering/embeddings, importance weighting) 

• cross-lingual learning (not today’s talk, just started)



• Parallelize data processing  
 
 
 

• Distributed model training (e.g. McDonald et al.,2010; Gesmundo & Tomeh, 2012)

Traditional HPC use in NLP
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Additional benefits of HPC

models: many parameters

evaluation: need robust results

not only lots of unlabeled data…

 unsupervised & semi-supervised algorithms

sharing: common data repositories



Example study: 
Importance weighting

models
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TARGET

assign instance-dependent  
weights (Shimodaira, 2001): !

!
domain classifier to 

discriminate between  
SOURCE & TARGET  

 (Zadrozny et al., 2004; Bickel and Scheffer, 
2007; Søgaard and Haulrich, 2011)	



approximation, e.g.:

Does importance weighting work for 
unsupervised DA of POS taggers?
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Domain classifier
(Søgaard & Haulrich, 2011)



Results
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Token-based domain classifier

on test sets;  results were similar for other representations (Brown, Wiktionary)
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NONE IS SIGNIFICANTLY  

BETTER THAN BASELINE
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significance  
cutoff

baseline

uniform

stdexp

Zipfian

NONE IS SIGNIFICANTLY  

BETTER THAN BASELINE

Random weighting
(Plank, Johannsen, Søgaard, 2014) EMNLP

Each plot: 500 POS tagging models;  total: 1500 models;  
sequential: ~5m/model (7500m, 5 1/2 days)  

parallelized on HPC Gardar (in 3 batches) : 1.5 days

500 runs



Results

13

Token-based domain classifier

on test sets;  results were similar for other representations (Brown, Wiktionary)

92

94

96

answers reviews emails weblogs newsgroups

baseline 1-gram 2-gram 3-gram 4-gram

avg tag ambiguity  1.09           1.07           1.07              1.05          1.05           
KL-div:                  0.05           0.04           0.03              0.01          0.01 
OOV:                    27.7           29.5           29.9              22.1          23.1

low 
low 

high OOV!

(Plank, Johannsen, Søgaard, 2014) EMNLP

NONE IS SIGNIFICANTLY  

BETTER THAN BASELINE



Gardar
• we used the joint HPC cluster in Iceland for these experiments 

• 288 nodes, 6 cores (= 3456 cores) 24GB each 

• batch jobs submitted via TORQUE 

• we have access since 6 months (end of April 2014): Gardar is very useful!   

• we have locally only: 1 server with 8 cores, 384gb memory, 1.5TB disk space



How robust are our 
results? 

evaluation



Within sample bias

• Twitter POS tagger, large differences on different 
Twitter samples:  
 
 
 
 

train/test Gimpel Ritter
Gimpel 90.46 82.29
Ritter 80.52 90.40

Combined 89.19 87.43

Twitter  
data sets

(Hovy et al., LREC 2014; Fromheide et al., 2014)



What to do about this?

• Whenever possible evaluate: 

• across several test data sets 

• on down-stream tasks 

• Estimate significance cut-off 

• Bootstrap-based evaluation

A B C



IAA-informed parsing: 
bootstrap learning curve

Norwegian
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IAA-informed parsing: 
bootstrap learning curve

Norwegian
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parallelization of NLP 
pipeline over 4 languages

NO CADA HR

node1 node2 node3 node4



parallelization of NLP 
pipeline over 4 languages

NO CADA HR

node1 node2 node3 node4
node5 node6 node7 node8

with 2 evaluation setups



common data repository 
for Nordic countries

sharing



Summary: HPC for NLP

• models: parallelization over data sets,  
parameter search, negative results 

• evaluation: significance cut-off,  
bootstrap samples 

• sharing: common data repository

… besides parallel data processing and distributed training: 



Thanks! 


