

Large-Scale Computation for Language Technology (In About Twenty Five Minutes)

Stephan Oepen

Universitetet i Oslo & CSLI Stanford

oe@ifi.uio.no

(Koenraad De Smedt and Christer Johansson, UiB)

So, What Actually is Language Technology?

NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Large-Scale Computation for Language Technology (2)

So, What Actually is Language Technology?

(2001: A Space Odyssey; HAL 9000; 1968)

NOTUR — 5-JUN-08 (oe@ifi.uio.no) —

Large-Scale Computation for Language Technology (2)

So, What Actually is Language Technology?

 \rightarrow (young) interdisciplinary science: language, cognition, computation; \rightarrow (again) culturally and commercially relevant for 'knowledge society'.

NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Large-Scale Computation for Language Technology (2)

Families of Language Processing Tasks

Speech Recognition and Synthesis

Summarization & Text Simplification

(High Quality) Machine Translation

Information Extraction — Text Understanding

Grammar & Controlled Language Checking

Natural Language Dialogue Systems

NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Large-Scale Computation for Language Technology (3)

Families of Language Processing Tasks

Speech Recognition and Synthesis

Summarization & Text Simplification

(High Quality) Machine Translation

Information Extraction — Text Understanding

Grammar & Controlled Language Checking

Natural Language Dialogue Systems

NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Large-Scale Computation for Language Technology (3)

Families of Language Processing Tasks

Large-Scale Computation for Language Technology (3)

What Makes Natural Language a Hard Problem?

< Den andre veien mot Bergen er kort. --- 12 x 30 x 25 = 25
> The other path towards Bergen is short. {0.58} (1:1:0).
> The other road towards Bergen is short. {0.56} (1:0:0).
> The second road towards Bergen is a card. {0.55} (2:0:0).
> That other path towards Bergen is a card. {0.54} (0:1:0).
> That other road towards Bergen is a card. {0.54} (0:0:0).
> The second path towards Bergen is short. {0.51} (2:1:0).
> The other road against Bergen is short. {0.48} (1:2:0).
> The second road against Bergen is short. {0.48} (2:2:0).
....

> Short is the other street towards Bergen. {0.33} (1:4:0).
> Short is the second street towards Bergen. {0.33} (2:4:0).

. . .

What Makes Natural Language a Hard Problem?

< Den andre veien mot Bergen er kort. --- 12 x 30 x 25 = 25 > The other path towards Bergen is short. {0.58} (1:1:0). > The other road towards Bergen is short. {0.56} (1:0:0). > The second road towards Bergen is short. {0.55} (2:0:0). > That other path towards Bergen is a card. {0.54} (0:1:0). > That other road towards Bergen is a card. {0.54} (0:0:0). > The second path towards Bergen is short. {0.51} (2:1:0). > The other road against Bergen is short. {0.48} (1:2:0). > Th)). **Scraped Off the Internet** • • 0). > Sh the road to the other bergen is short . L:0). > Sh Den other roads against Boron Gene are short. • • Other one autobahn against Mountains am abrupt.

NOTUR — 5-JUN-08 (oe@ifi.uio.no) —

Large-Scale Computation for Language Technology (4)

The Holy Grail: Balancing Coverage and Precision

System Coverage

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (5)

The Holy Grail: Balancing Coverage and Precision

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (5)

The Holy Grail: Balancing Coverage and Precision

• NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (5)

A Tool Towards Understanding: (Formal) Grammar

Wellformedness

- *Kim was happy because _____ passed the exam.*
- *Kim was happy because _____ final grade was an A.*
- *Kim was happy when she saw _____ on television.*

A Tool Towards Understanding: (Formal) Grammar

Wellformedness

- *Kim was happy because ____ passed the exam.*
- *Kim was happy because _____ final grade was an A.*
- *Kim was happy when she saw _____ on television.*

Meaning

- Kim gave Sandy the book.
- Kim gave the book to Sandy.
- Sandy was given the book by Kim.

A Tool Towards Understanding: (Formal) Grammar

Wellformedness

- *Kim was happy because _____ passed the exam.*
- *Kim was happy because _____ final grade was an A.*
- *Kim was happy when she saw _____ on television.*

Meaning

- Kim gave Sandy the book.
- Kim gave the book to Sandy.
- Sandy was given the book by Kim.

Ambiguity

- I shot an elephant in my pyjamas.
- Have her report on my desk by Friday!

Background: Context-Free Grammars

$$\begin{cases} S \rightarrow NP \ VP \\ VP \rightarrow V \ NP \\ VP \rightarrow VP \ PP \\ NP \rightarrow NP \ PP \\ PP \rightarrow P \ NP \\ NP \rightarrow Kim \ | \ deer \ | \ socks \\ V \rightarrow shot \\ P \rightarrow in \end{cases}$$

All Complete Derivations

- are rooted in the start symbol S;
- label internal nodes with categories $\in C$, leafs with words $\in \Sigma$;
- instantiate a grammar rule $\in P$ at each local subtree of depth one.

Background: Context-Free Grammars

NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Large-Scale Computation for Language Technology (7)

Complex Categories: Unification-Based Grammars

Symbolic Computation: A Few Figures

- Each category is a DAG of ~300 nodes; ~80 bytes average node size;
- ~4,000 top-level unifications per cpu second; accessing ~180 mbytes;
- \bullet parse time for ~20-word sentence ~4 seconds; thousands of analyses.

(Unification-Based) HPSG Parsing — Then and 'Now'

VersionFlattormrest det $%$ ϕ <th< th=""><th>Version</th><th>Platform</th><th rowspan="2">Test Set</th><th>filter</th><th>etasks</th><th>pedges</th><th>tcpu</th><th>space</th></th<>	Version	Platform	Test Set	filter	etasks	pedges	tcpu	space
October 1996 PAGE 'tsnlp' 'aged' 49·9 656 44 4·77 19,016 'aged' 51·3 1763 97 36·69 79,093 August 2000 PET 'aged' 93·9 170 55 0·03 333 fuse' 95·1 753 292 0·14 1,435	VEISIOII			%	ϕ	ϕ	ϕ (S)	ϕ (kb)
October 1996 PAGE 'aged' 51.3 1763 97 36.69 79,093 August 2000 PET 'tsnlp' 93.9 170 55 0.03 333 fuse' 95.1 753 292 0.14 1,435 fuse' 95.5 3084 1140 0.65 10,589	0		'tsnlp'	49.9	656	44	4.77	19,016
August 2000 PET 'tsnlp' 93·9 170 55 0·03 333 August 2000 PET 'aged' 95·1 753 292 0·14 1,435 'fuse' 95·5 3084 1140 0·65 10.589	October 1996	PAGE	'aged'	51.3	1763	97) (36.69	79,093
August 2000 PET 'aged' 95.1 753 292 0.14 1,435 'fuse' 95.5 3084 1140 0.65 10.589			'tsnlp'	93.9	170	55	0.03	333
<i>'fuse'</i> 95.5 3084 1140 0.65 10.589	August 2000	st 2000 PET	'aged'	95·1	753	(292)	0.14	1,435
			'fuse'	95.5	3084	1140	0.65	10,589

Cumulative Break-Through in Parsing Efficiency

- Oldest comparable profiles: net speed-up of around 260 (excluding gc);
- grammar evolution: problem size (in edges) increased by factor of three;
- additional factors (hardware, packing): above four orders of magnitude;
- \rightarrow Unification-based parsing nowadays applied at 'Web scale' (PowerSet).

A Typical Work Day in an Empirical Science

Near-Instantaneous Regression Testing

Background

- Grammars, development and production systems evolve permanently;
- English Resource Grammar (ERG) continuously developed since 1993;
- seemingly simple changes will often have unexpected, global effects;
- automated regression testing, progress reporting, and error detection;
- \rightarrow enable *all* developers to perform unit testing *and* end-to-end evaluation.

Technological Advances

- Parallel processing allows dozens to hundreds of test runs each day;
- \rightarrow profiling full grammar and software evolution recorded in database.

General Architecture: [incr tsdb()] Profiler

Large-Scale Computation for Language Technology (12)

General Architecture: [incr tsdb()] Profiler

Originally developed in mid-1990s (based on PVM); relatively large messages: full serialization of all parses; scalability issues; unable to drive more than ~20 clients.

NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Large-Scale Computation for Language Technology (12)

An Example: Machine Translation in LOGON

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (13)

An Example: Machine Translation in LOGON

Some LOGON Highlights

- Re-usable, mono-lingual precision grammars as linguistic back-bone;
- pipeline of three heavy-weight, unification-based search processes;
- \rightarrow limited domain and vocabulary: very competitive with state-of-the-art.

Ambiguity Management: Stochastic Processes

NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Large-Scale Computation for Language Technology (14)

Ambiguity Management: Stochastic Processes

Stochastic Elements in LOGON

- At each stage, rank alternate hypotheses finally, re-rank globally;
- probabilistic modeling: model acquisition computationally intensive;
- \rightarrow hybrid MT: linguistic back-bone combined with advanced statistics.

Ambiguity Resolution Remains a (Major) Challenge

The Problem

- With broad-coverage grammars, even moderately complex sentences typically have multiple analyses (tens or hundreds, up to tens of thousands);
- unlike in grammar writing, exhaustive parsing is useless for applications;
- identifying the 'right' (i.e. intended) analysis is an 'AI-complete' problem;
- inclusion of (non-grammatical) sortal constraints is generally undesirable.

Typical Approaches

- Design and use statistical models to select among competing analyses;
- for string s, some analyses t_i are more or less likely: maximize $P(t_i|s)$;
- \rightarrow Probabilistic Context Free Grammar (PCFG) is a CFG plus probabilities.

The most important questions of life are, for the most part, really only questions of probability. (Pierre-Simon Laplace, 1812)

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (16)

The most important questions of life are, for the most part, really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with mathematicians who have attempted to predict random events from finite data samples. (Richard A. Epstein, 1977)

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (16)

The most important questions of life are, for the most part, really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with mathematicians who have attempted to predict random events from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion 'probability' of a sentence is an entirely useless one, under any known interpretation of this term. (Noam Chomsky, 1969)

The most important questions of life are, for the most part, really only questions of probability. (Pierre-Simon Laplace, 1812)

Special wards in lunatic asylums could well be populated with mathematicians who have attempted to predict random events from finite data samples. (Richard A. Epstein, 1977)

But it must be recognized that the notion 'probability' of a sentence is an entirely useless one, under any known interpretation of this term. (Noam Chomsky, 1969)

Every time I fire a linguist, system performance improves. (Fredrick Jelinek, 1980s)

A (Simplified) PCFG Estimation Example

P(RHS LHS)	CFG Rule
3/3 = 1.00	$S \rightarrow NP VP$
2/4 = 0.50	$VP \rightarrow VP PP$
1/4 = 0.25	$VP \rightarrow VNP$
1/4 = 0.25	$VP \rightarrow V$
:	$PP \rightarrow PNP$
	•

 Estimate rule probability from observed distribution;
\rightarrow conditional probabilities:
$P(RHS LHS) = \frac{C(LHS, RHS)}{C(LHS)}$

A (Simplified) PCFG Estimation Example

Requires *treebank* as training data: collection of 'correct' trees; can be annotated manually or semi-automatically (disambiguation); Penn Treebank, for example: one million words of newspaper text.

	P(RHS LHS)	CFG Rule
_	3/3 = 1.00	$S \rightarrow NP VP$
	$2^{'}\!/4 = 0.50$	$VP \rightarrow VP PP$
	1/4 = 0.25	$VP \rightarrow V NP$
	1/4 = 0.25	$VP \rightarrow V$
	:	$PP \rightarrow PNP$
		•

 Estimate rule probability from observed distribution;
\rightarrow conditional probabilities:
$P(RHS LHS) = \frac{C(LHS, RHS)}{C(LHS)}$

Stochastic Unification-Based Grammars

Conditional Parse Selection

- Local independence assumption is not true for unification grammars;
- PCFG unable to 'learn' from negative data, e.g. dis-preferred parses;
- \rightarrow conditional model: given some context, sample properties of events.

Maximum Entropy Ranking

Given a sentence s and a set of trees $\{t_1 \dots t_n\}$ assigned to s by some grammar, find the tree t_i that maximizes $p(t_i|s)$. Assuming a set of features $\{f_1 \dots f_m\}$ with corresponding weights $\{\lambda_1 \dots \lambda_m\}$, the conditional probability for tree t_i is given by:

$$p(t_i|s) = \frac{\exp \Sigma_j \lambda_j f_j(t_i)}{\Sigma_{k=1...n} \exp \Sigma_j \lambda_j f_j(t_k)}$$
(1)

Stochastic Unification-Based Grammars

Conditional Parse Selection

- Local independence assumption is not true for unification grammars;
- PCFG unable to 'learn' from negative data, e.g. dis-preferred parses;
- \rightarrow conditional model: given some context, sample properties of events.

Maximum Entropy Ranking

Given a sentence s and a set of trees $\{t_1 \dots t_n\}$ assigned to s by some arammar, find the tree t_i that maximizes $p(t_i|s)$. Assuming a set of fea-

Hinoki Treebank: 65,424 sentences \rightarrow 5,255,925 training instances; 3,310,202 distinct feature types (cached as 106-gbyte BerkeleyDB); iterative parameter estimation *often* converges within a few hours; cross validation, hyper-parameter search \rightarrow hundreds of experiments.

High-Performance Computing in LOGON

High-Performance Computing in LOGON 3368

Some Preliminary Conclusions — Outlook

Emerging Language Technology Trends

- eScience: information extraction from scholarly texts, e.g. Wikipedia;
- for example ontology learning, eventually reasoning; find contradictions;
- \rightarrow Web-scale language technology, work towards *natural language search*.

Confluence of Approaches

- Fashion of the year: *hybridization*, balance of linguistics and statistics;
- large-scale data manipulation and computation increasingly important;
- \rightarrow we still need to learn more about *large-scale* distributed computing.

Some Preliminary Conclusions — Outlook

Emerging Language Technology Trends

- eScience: information extraction from scholarly texts, e.g. Wikipedia;
- for example ontology learning, eventually reasoning; find contradictions;
- \rightarrow Web-scale language technology, work towards *natural language search*.

Confluence of Approaches

- Fashion of the year: *hybridization*, balance of linguistics and statistics;
- large-scale data manipulation and computation increasingly important;
- \rightarrow we still need to learn more about *large-scale* distributed computing

Please keep growing HPC infrastructure, we're about to discover it!

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (20)

Some Preliminary Conclusions — Outlook

Emerging Language Technology Trends

- eScience: information extraction from scholarly texts, e.g. Wikipedia;
- for example ontology learning, eventually reasoning; find contradictions;
- \rightarrow Web-scale language technology, work towards *natural language search*.

Confluence of Approaches

- Fashion of the year: *hybridization*, balance of linguistics and statistics;
- large-scale data manipulation and computation increasingly important;
- \rightarrow we still need to learn more about *large-scale* distributed computing

(But please remember to put in insane amounts of memory!)

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (20)

The IFI (Logic and) Natural Languages Group

Language Technology

Doctoral Fellow	Liv Ellingsen	Soft Grammatical Constraints
Professor	Tore Langhom	Logical-Form Semantics
Professor	Jan Tore Lønning	Computational Semantics
Professor	Stephan Oepen	Constraint-Based Processing
Doctoral Fellow	Erik Velldal	Machine Learning
Doctoral Fellow	Gisle Ytrestøl	Incremental Parsing

One PhD and Three MSc Candidates Finishing in 2008

Computational Logic

Assistant Professor	Asbjørn Brændeland	Functional Programming
Professor	Herman Ruge Jervell	Proof Theory

 \cdot NOTUR — 5-JUN-08 (oe@ifi.uio.no) -

Another (Albeit Somewhat Dubious) Vision

[Dave] Open the pod bay doors, HAL. [HAL] I'm sorry Dave, I'm afraid I can't do that.

[Dave] What's the problem?

 [HAL] I think you know what the problem is just as well as I do.
 [Dave] What are you talking about, HAL?
 [HAL] This mission is too important for me to allow you to jeopardize it.

[HAL] Dave, this conversation can serve no purpose anymore. Goodbye.

. . .

Some Sample Translations (And Errors)

1 Velkommen til Jotunheimen! Welcome to Jotunheimen.

- 1037 På vestbredden lå det der tre setre nesten ved siden av hverandre. On the west bank, 3 mountain pastures lay there almost beside each other.
- 1048 Vil du ikke gå så langt, er Besstrondrundhø et utmerket alternativ. If you don't want to go so far, Besstrondrundhø is an excellent alternative.
- 1376 Den toppen er et fint turmål om du bor på Bessheim eller Gjendesheim.

That summit, a nice trip tongue is if you stay at Bessheim or Gjendesheim.

Some Sample Translations (And Errors)

1 *Velkommen til Jotunheimen!* Welcome to Jotunheimen.

1037 På vestbredden lå det der tre setre nesten ved siden av hverandre. On the west bank, 3 mountain pastures lay there almost beside each other.

1048 Vil du ikke gå så langt, er Besstrondrundhø et utmerket alternativ. If you don't want to go so far, Besstrondrundhø is an excellent alternative.

1376 Den
desi
That
desiGoogle Translater Gjen-That
desiDo not want to go so far,
is Besstrondrundhø an excellent alternative.r Gjen-

NOTUR — 5-JUN-08 (oe@ifi.uio.no)

Large-Scale Computation for Language Technology (23)