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1 Introduction

In this chapter we consider the issuereélization ranking i.e. the problem of
ranking the target sentences produced by the generatorgranymar-based natu-
ral language generatiomi(G) system with sufficiently wide coverge is deemed to
face the problem oihdeterminacy This problem concerns the fact that the rules
of the grammar often will admitt many possible surface medions for a given
semantic input. For a given targers passed on from transfer, th&B generator
(see ChapteP?) used inLocoN will typically produce hundreds—sometimes even
thousands—of different English surface realization. Téverses for this indeter-
minacy are many and include phenomena such as the optionaltomplemen-
tizers and relative pronouns, permutation of (intersegtmodifiers, lexical and
orthographic alternations, and (if uncerspecified innimes) choices pertaining to
topicalization and passivization.

All of the alternative realizations of a givewmrs will be what we regard as
paraphrasesmeaning that they are all semantically equivalent, att leaa strict
truth-conditional sense. Although all of these paraplgag# also be well-formed
according to the underlying grammar (i.e. the Lin@GRG, as described in Chap-
ter ??), some of them will usually sound much more natural and fltieam others.
As pointed out by, among others, Abney (1996), whegrammaticality(at least
in computational terms) is an absolute or two-valued prtyp@rgiven sentence ei-
ther is or is not grammatical according to a given gramnraiyralnesss a matter
of degree. Moreover, as the coverage and scope of the uimdedgneration gram-
mar increases, so does typically also the number of re@imathat it can produce
for a given meaning.

We see that there is clear need for a principled and scaladtiean for automat-
ically scoring and ranking the competing realizations. His thapter we describe
the type of data-driven model that we employ for this taskimitocon. In short,
we show how it is possible train discriminative models falization ranking in
a similar manner as when training models for statisticas@alisambiguation. By
introducing the notion of generation treebankwe are able to adapt and extend
on the methodology of state-of-the-art statistical paysind statistical unification-
based grammars, thus making it applicable to the contaxtcf We also compare
the performance of our novel discriminative treebank meal#he performance of
a more traditionah-gram language model, as well as a model that combines both
types of information.

The rest of this chapter is organized as follows. In the neatien we first pro-
vide some more background on the problem of realizationingn&nd the types
of models that we employ. Section 3 describes the treebatasktdat we use for
trainig our discriminative models, including the notionafeneration treebank.



In Section?? we then present various evalutation results for the modeslsg
approaches based on both human judges and automatic m&tcEnally sum-
marize our findings and give some concluding remarks in Sedi

Before we go on, it is important to note that the primary footithis chapter
is restricted to the problem of ranking generator outputkhcligh the particular
generator we use is embedded in the overalon MT system, our ranking task is
restricted to the context of generation. This is an imparthstinction. It means
that we are not concerned with ranking sentences as tremslaif a foreign source
sentence, but rather as realizations of a semantic repatioen The problem of
finally ranking the output translations (conditioned onithigut source) is deferred
to Chapter??, where we describe a discriminative model for end-to-enanidng.
This reranking model of Chapt@r incoporates the realization ranker described in
the current chapter as a separate feature, in addition égvadether global features
of the target sentences.

2 Background

Figure 1 shows some examples of alternative outputs whegrgtmg from a sin-
gle (underspecifiedMRrs using the LINGOERG. We see that, while a linguistic
precision grammar goes a long way towards guaranteeingngaicality of all re-
alizations (to the level of providing the so-callétht filter on subject extraction,
for example), clearly some outputs are far more fluent thaerst For the (non-
deterministic) items in the test data that we consider im ¢hiapter we get close to
rix,€.ealizations on average, where the maximiuryixs,e.andidates for a single
input MRS (this maximum, however, is specific to our data set and coull ve
larger).

The traditional approach to ranking alternative genematiotputs is to score
the surface strings using a generativggram-basedanguage mode(LM). An n-
gram model factorizes the probability of a sentence intoptweluct of the indi-
vidual word probabilities, and each word probability isyorbnditioned on the
n — 1 words preceding it in the sequence. The approach of using-gram LM
for realization ranking was pioneered in the hyhxids system Nitrogen (Knight
& Hatzivassiloglou, 1995; Langkilde & Knight, 1998a) and ficcessarALogen
(Langkilde, 2002), in which the strings are scored accgrdmabigram model
(i.e.n = 2). Similar approaches based argram statistics has later been used in
many other generator systems, such as those described pglBen& Rambow
(2000), Ratnaparkhi (2000), White (2004), Habash (2004, athers.

One advantage of usinggramLMs is that they are relatively easy to estimate,
and they can be trained on “raw” unannotated text. Howekergetare also many



remember that dogs must be on a leash
remember dogs must be on a leash
on a leash remember that dogs must be
on a leash remember dogs must be
a leash remember that dogs must be on
a leash remember dogs must be on
dogs remember must be on a leash

Figure 1. Example sets of generator outputs using the LirERG Unless the
input semantics is specified for aspects of informationcttine (e.g. requesting
foregrounding of a specific entity), paraphrases will idelwall grammatically le-
gitimate topicalizations. Other sources of generator guity include, for ex-
ample, the optionality of complementizers and relativenptms, permutation of
(intersective) modifiers, and lexical and orthographieraiations.

limitations inherent to the.-gram approach. The most obvious such limitation, as
already pointed out by Langkilde & Knight (1998b), is thatadinaryn-gram lan-
guage model cannot capture long-range dependencies aadd#geies between
non-contiguous words. An important part of this problemoiscourse, the fact
that a purely surface orientedgram model will fail to capture dependencies that
show a structural rather than sequential regularity. Thepee structures of the
strings are ignored entirely. Neither can the model capdependencies that hold
between more than words. These are some of the reasons why it seems reason-
able to assume that the quality of the generator rankingbe@mproved if we aim

to go beyond the abilities of the standategram models, and try to incorporate
more information about the linguistic structure of the iztions.

The realization ranking incorporated linGon follows a rather different route
and draws heavily on previous research on a different bateelranking task;
statistical parse selectionCompared to the field afiLG, models for statistical
ranking have received a lot more attention within the areaatdiral language un-
derstandingLU) or parsing Due to its significantly longer history of research,
the field of statistical parsing is in many ways much more meatiian the field of
statistical generation, and statistical parse selectiodeis have proved especially
well-suited for capturing soft constraint that are difficid encode directly in the
grammar or to define in terms of explicit rules.

In our case, working with grammar-based generation usimgaistically fine-
grained and wide-coverag#scgrammar such as trergG, there are certain areas
within statisticalNLU that immediately stand out as particularly interesting.e Th
work on learningstochastic unification based gramm#gBGs), as pioneered by



Abney (1997) and Johnson, Geman, Canon, Chi, & Riezler (199@ among
these. As any large-scale wide-coverage grammar of a hé&nguage is destined
to be massively ambiguous, there is an immediate need to Ibet@lefficiently
order the various hypotheses in a systematic way. Johnsain(&899) show how
conditional log-linear modelsan be used for efficiently estimating statistical parse
disambiguation models for large-scale unification-basedhgnars. As further de-
scribed in Section 4 below, log-linear models are define@ims offeature func-
tionsthat can be designed to record arbitrary properties of thietsires that we are
interested in modeling. Commonly the features are set updord the grammat-
ical productions in the parse trees, and the estimationeofithdel parameters is
then carried out on the basis ofraebank Generally speaking, a parse treebank is
a corpus where strings have been annotated with grammestioature. In the case
of treebanks based on unification grammars, the sets obhlaiparses licensed by
the grammar for each string have typically been manuallgrdisiguated in order
to indicate which is considered to be preferred or optimaheWestimating a con-
ditional log-linear model parse selection, as in the worklbfinson et al. (1999),
the models parameters are chosen to maximize the prolgabilithe preferred
parses relative to all the other non-preferred parses.

The tasks of ranking parses and ranking realizations caedsets closely par-
allel eachother, and in many ways there is a relatiomadrse similaritybetween
these two problems. While parsing attempts to recover tdenlying meaning and
structure of a given surface utterance, generation atgetogxpress a given mean-
ing as a surface utterance. In both directions of proceskimgever, the underlying
grammar will usually license many possible hypotheses can@spondingly there
is a need for ordering these hypotheses in a principled astdsatic manner. We
see that the two ranking tasks parallel each other closadliraboth cases the goal
is to find the optimal output structure under some set of camgs.

In extension of the research pioneered by Abney (1997) ahdsém et al.
(1999), the literature contains many other examples ofy@pplog-linear models
for the problem of parse disambiguation, such as the worksipo@he (2000), Mal-
ouf (2002), Riezler et al. (2002), Miyao & Tsujii (2002) andaMuf & van Noord
(2004), to name a few. However, our starting point for adpthis modeling ap-
proach for the purpose of realization ranking, is provdibgthe work of Toutanova,
Manning, Flickinger, & Oepen (2005) on building discrimiiva log-linear mod-
els for parse disambiguation on thesGbased Redwoods treebank (Oepen et al.,
2002). One reason why this work forms an especially wellesustarting is that
theLocoN treebanks can effectively be viewed as a separate branchdviddds.
As described in Chapté??, Redwoods is annotated in accordance withERe,
i.e. the same grammar that we use for generation withoN, including seman-
tic analysis in the form ofMRsS. As further detailed in Section 4 below, the core
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set of features included in our log-linear realization renskwill also be defined as
extensions to the feature set used by Toutanova et al. (2@@5yarious structural
features defined over the grammatical derivation of thezatdns. However there
are a few crucial modifications that need to be done with iEsjpethe treebank
data before we are in a position to train discriminative nieéta realization rank-
ing. The next section describes the notion ayaametric treebankncluding the
important subset termedgeneration treebankas introduced by Velldal, Oepen,
& Flickinger (2004).

3 Symmetric Treebanks

As noted above, the discriminative parse selection modelsaned by maximiz-
ing the probability of all the preferred analyses relativeall the alternative and
non-preferred analyses. This gives us a statistical mamelhie distribution of
parses conditioned on a given input string. For the purpbseatization ranking,
however, we are interested in modeling a somewhat diffafisttibution, viz. the
distribution of strings given the semantics. Estimatinghsa model would mean
maximizing the probability of the preferred realizatiomsative to all the alterna-
tive and non-preferred realizations. However, as thera isnglicit directionality
inherent to the annotations of traditional parse-oriemiteebanks, they do not im-
mediately offer the kind of training data we require. Theimjplity relations en-
coded in these treebanks are conceived as mapfiimgsstringsto analyses. This
relation is represented in Figure 2(a) below, where thenargpresents the opti-
mality relation and the other arcs correspond to compesing-pptimal) parses. In
other words, the arrow points from the observed string tadibambiguated gold
analysis. (To best understand this figure it should be redidwses had zoomed in
on a single item in the treebank.)

As argued by Velldal et al. (2004) and (Velldal, 2008), hoarevor the pur-
poses of training a statistical “generation grammar”, @&me reasonable to make
the assumption that the treebanked strings can also bedraatoptimal realiza-
tions of the treebanked semantics. In other words, the stiggeis to view the
optimality relations in the treebank &&directional or symmetric What this ef-
fectively means in practise, is that we take the originatesares in the corpus to
define the reference realizations for the correspondirgbteked semantics. As
described in (Velldal et al., 2004) and Velldal (2008), tagsumpiton forms the
basis of a fully automated procedure for contsructing theing data required
for a discriminative realization rankeron the basis of aistexg Redwoods parse
treebank (Velldal et al., 2004). We outline this procedwtot.

Recall that theurs component of theiPsGannotations in the Redwoods-style



treebanks can also be used as input toLikee generator. This means that we can
take the semantics of the originally treebanked analysisexhaustively generate
all the possible paraphrases that express this meaninigeased by the underly-
ing grammar. Given the assumption of bidirectional optityalhe generated para-
phrases matching the original string in the underlying aerpan then be labeled
as the optimal or preferred candidates. This results in fetslations as those
illustrated in Figure 2(b). This kind of expanded treebassource is what Velldal
et al. (2004) termed symmetric treebankA symmetrized treebank consists of

(¢) gold-labeled pairgutteranceanalysig that are considered bidirectionally
optimal,

(i7) the set of competing analyses for eattterance and
(777) the set of competing paraphrases for eachlysis

Note that the bidirectional optimality pertains to the levestrings and semantics,
which are the input to the parser and the generator respictiv

In contexts where we need to be clear about the specific “sifla’symmet-
ric treebank that we are referring to, we sometimes use thestearse treebank
andgeneration treebankVelldal et al., 2004; Velldal & Oepen, 2005). The side
corresponding to the generation treebank is isolated iarEig(c). This is exactly
the data that we need in order to train a realization rankersmmilar way as for
discriminative parse selection models.

A more detailed step-by-step description of how we constitue generation
treebanks used for training our rankers can be found in &e{2D08). In addition
to the two steps oulined above (i.e. paraphrasing the aligieebank items fol-
lowed by identification of the references), a third step €ponds to pruning the
resulting data items. This simply amounts to removing itdansvhich there is
no interesting indeterminacy and therefore are not retdeaearning (e.g. items
with only a single realizations or items where all the reatians have identical
yields). In sum then, the procedure for deriving a genendtieebank on the basis
of an existing parse treebank consists of three main steps:

(i) Paraphrasing, i.e. exhaustively generating all thesides realizations for
each goldvrs.

(i) Labeling, i.e. matching the generator output agaihstdriginal treebanked
strings to identify gold realizations.

(iii) Pruning, i.e. throwing away items that are not releiiam learning (e.g. items
with only one realization).



Utterances
sasAleuy
Utterances

sasAleuy
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(a) Parse treebank (b) Symmetric treebank

Figure 3: Single-item view of dif-
ferent types of treebanks. Arrows
indicate preference or optimality
relations. (a) Parse treebank of ut-
terances paired with possible anal-
yses. (b) Symmetric treebank
including all paraphrases of the
treebanked semantic analyses, and
assuming bidirectional optimality
relations. (c) Generation treebank
of semantic analysis paired with
possible realizations.

Utterances
sasAleuy

A

(c) Generation treebank

Before we move on to look at some properties of some actual skt cre-
ated with this procedure, it is worth spending a few more cemis on the im-
plementation of the second step above, the labeling oferéers. When it comes
to identifying the references on the basis of the originadebanked strings, the
matching could potentially be done on several differentéllevOne option could be
to match the fulHPSGsigns, or the corresponding derivation tree. Another optio
is to match the surface strings themselves. For the expetémeported in this
chapter, however, the matching is done on the level opteterminal yieldof the
generated derivations. As further described in relatioth&feature functions of



our log-linear models, presented in Section 4, the pretahyiields correspond to
lexical identifiers of theeERG. Performing the matching at this level means that all
realizations that have the same yield will be treated asvatgnt. This furthermore
means that we often end up labelimuiltiple realizations as gold for a single in-
put MRs. Finally, note that we migth also “loose” a couple of itemdtia labeling
step, due to the fact that we are not always able to re-genamgtrealizations that
matches the original input in the parse treebank.

Table 1 summarizes the result of “symmetrizing” the treé&ednocoN de-
velopment data and held-out test data, creating the camelépg generation tree-
banks. We see that the data items are broken down along kdireemsions. The
items are first split into bins according to their number ofigrated realizations
(i.e. what would correspond to “ambiguity rate” in parsimgms). For each bin
the table then shows the corresponding number of itemsageerentence length,
average number of realizations, and average number ofagals labeled as gold.
As can be seen from the tables, the total average length 8Bk candidate real-

LOGON Development Data

Aggregate Items Words Trees Gold Baseline
100 < n 369 27.5 360.0 8.0 3.33
50<n<100 230 247 735 49 6.64
10<n< 50 1144 206 225 33 17.08
5<n< 10 868 153 69 22 32.13
l<n< 5 1310 139 32 14 45.64

Total 3921 181 473 30 28.05

LOGON Held-Out Test Data

Aggregate Items Words Trees Gold Baseline
100 < n 17 26.0 5725 7.8 2.20
50 < n< 100 24 241 78.1 5.6 7.55
10<n< 50 83 20.0 234 3.2 15.86
5<n< 10 57 146 6.7 21 32.21
l<n< 5 88 140 31 14 45.08

Total 269 176 528 29 27.28

Table 1: Some core metrics for the generation treebanks wdangraining and
testing. The data items are aggregated relative to theibeuwf realizations. The
columns are, from left to right, the subdivision of the dataading to the number
of realizations, total number of items, average string flengverage number of
realizations, average number of references, and finallyb#seline for expected
accuracy by random choice.
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izations in the_.ocoN generation treebank we use for development is 18.1. For the
269 items in held-out data set the average string lengthsisslightly shorter, at
17.6. Note that these figures refer to the lengtto&Enizedstrings, which means
that for example punctuation is treated as separate unithieldevelopment data,
we see that the average number of generated hypothesesmeés #7.3, while the
number is 52.8 for the held-out data. Not surprisingly, wd @rhigher number of
candidate realizations for the items which also have a loagerage string length.

Although the degree of non-determinism, i.e. the averagel®u of available
candidates, is obviously an important factor charactaegizhe difficulty of the
ranking task, another important factor is the number of haids labeled as gold,
as described in Section 3 above. This figure is around thregoth data sets. On
the basis of these of these two properties, we can compatied@mm choice base-
line to more directly indicate the difficulty of the ranking taskhis corresponds
to the average exact match accuracy we could expect to abtam were to se-
lect candidate realizations completely at random. As wedreae the final column
of Table 1, the baseline figure for the full development teedbis28.05%, while
slightly lower for the held-out data, av.28%.

In the following sections we look at the actual models we wppt the real-
ization ranking task. We first present the details of thellogar model, including
the feature types, and look at the corresponding resultsorder to also asses
the performance of our discriminative treebank model carybéo the traditional
apporach of using-gram language models, Section 5 also reports on some exper-
iments of ranking using anm trained on the British National CorpusNC). Al
models are evaluated according to three automatic metrics:

- Exact match accuracy: The percentage of times that thestoked sentence
is identical with the reference sentence).

- Word Accuracy A): String similarity-measure based on the so-cabelit
distancebetween a candidate string and a reference.

- NEVA: A reformulation ofBLEU (Papineni, Roukos, Ward, & Zhu, 2002)
provided by Forsbom (2003) in order to make it well-define@ agntence-
level metric. Computed as the arithmetic mean of the miagram precision
scores.

4 Ranking using a Discriminative Log-Linear Model

The flexible framework provided by log-linear modeling hagb widely used for
a range of tasks iNLP, including parse selection (e.g. Johnson et al., 1999; Malo
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& van Noord, 2004) and reranking for machine translatiog.(@©ch et al., 2004).
A model is specified by a set of real-valuie@iture functiongf) that describe prop-
erties of the data, and an associated sééafed weightg)) that determine the
contribution of each feature. Given a seticfuch feature functions, each observed
pair of semantics and realization is represented as a feature vectos, r) € R¢,
and a vector of weights € R¢ is then fitted to optimize the likelihood of the train-
ing data. A conditional log-linear model for the probakilif a realizatiorn given

a semantics, has the general parametric form

d
pa(rls) = 5 e (Z Aifi<s,r>) ®

=1

d
pa(r]s) = le(s) exp (Z /\z‘fz'(SaT)> 2

i=1
whereZ, is a normalization term defined as

d
Zx(s) =Y q(r'|s)exp (Zkifi(sf/)) 3)

r'eY(s) i=1

andY (s) gives the set of all possible realizationssof
The estimatioh of the A\-parameters seek to maximize the (log of) a penalized
likelihood function as in

d
POV
202

A = arg max log L(\) — 4

A
where L(\) is the conditionalizedlikelihood of the training data, computed as
L(\) = Hi]ilpA(rﬂsi) (Johnson et al., 1999). The second term of the likelihood
function in Equation (4) is a penalty term that is commonlgdi$or reducing the
tendency of log-linear models to over-fit, especially whexining on sparse data
using many features (Chen & Rosenfeld, 1999; Johnson e1%09; Malouf &
van Noord, 2004). More specifically it defines a zero-meansSian prior on the
feature weights which effectively leads to less extremeesl Given a log-linear
modelp,, the scores used for ranking the candidate realizationbeaomputed
simply asscore(r) = ). A fi(r) since we are only interested in the relative rank
order.

We use the TADM open-source package (Malouf, 2002) for training, using its
limited-memory variable metricas the optimization method. @ For more information see
‘http://tadm sourceforge. net/’.
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4.1 Featuresand Tuning

In the log-linear parse selection models build by Toutaretval. (2005), the fea-
tures are defined ovetPsGderivation trees This is the fundamental data type
of the Redwoods treebanks. The internal nodes of a denivatee correspond to
identifiers of construction types in the underlyiBgG grammar, such as the head-
complement or head-adjunct schemas, while the pretermielas correspond to
identifiers of the lexical entries. For the purpose of featextraction, however,
these latter preterminal lexical identifiers are first mapigethe more abstradex-

ical entry typegLE-types) within the grammar. A sample derivation tree for the
sentenceélhe dog barkss shown in Figure 4, where the pre-terminal nodes have
first been mapped to the such abstract lexical types.

subjh

T

hspec third_sg_fin_verb

det_the_le sing_noun v_unerg-le

the n_intr_le barks

|
dog

Figure 4. SampleiPsGderivation tree for the sentendkbe dog barks Phrasal

nodes are labeled with identifiers of grammar rules, and-tgmrainal) lexical

nodes with class names for types of lexical entries. Notg thhile the native
derivation tree format has pre-terminals correspondinggstizal identifiers, this
figure shows a somewhat modified format where these idestifisxr mapped to
one of theERGS abstract lexical types. This is the representation than$ the

basis of our treebank features, as exemplified in Table 2.

The basic feature set of our discriminative realizatiorkess is defined in the
same way as for thePCFG-amodel of Toutanova et al. (2005). In this set-up, each
feature captures a local sub-tree from the derivation téichio depth one. In other
words, these features record the particular productiosgrebd in a given tree,
such asispec — det_the_le sing_noun. In Table 2 these features correspond to feature
template #1. Thealueof a given type # 1 feature corresponds to the number of
times a given expansion occurs in the tree.

We have also experimented with several extensions to thisife set. For
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example, to reduce the effects of data sparseness, weuotdda feature type # 2
as seen in Table 2, which provides a back-off mechanism fictmfigurational
features above. While the type #1 features record the fglleece of daughters
in the local sub-trees, the type # 2 features reduce thislyoame of the daughters
in turn. We sometimes refer to these featureadie edgdeatures, in analogy to
the notion of active edges in chart-based generationfizardiote that, since the
context that gets recorded is reduced (as compared to tee#tydeatures), there
will also be significantly fewer unique features instamtigtthis template, while
the total number of occurrences of each of these featurébavitorrespondingly
higher.

Conversely, to facilitate sampling rger contexts than just sub-trees of depth
one, feature template # 1 also allows for various degreggasfdparenting By
specifying an additional parameter to the template, therdsd information can be
extended to include various levels of ancestor annotalibis ancestor parameter
is available also for the active edge features (type # 2)clwhieans that, for a
given node, we extract a non-branching path through thetisencludes a single
daughter together with an upward chain of dominating nobfe$able 2, the level
of grandparenting is indicated by the first integer in thdansated type #1 and
#2 features. Note that what is the optimal maximum-level r@ingparenting is
determined empirically through experimentation.

In addition to the dominance-oriented features defined @bmw models also
include features that are more linearly oriented. The featwf type #3 and
#4 recordn-grams of lexical typesextracted from the pre-terminal yields of the
derivation trees. In loose analogy #immM part-of-speech tagging, thegrams of
lexical types capture syntactic category assignments diffegzence between tem-
plates #3 and #4 only regartxicalization as the former additionally includes
the surface token associated with the rightmost elementct 2-gram (again,
this can be seen as loosely corresponding to the emissidrlpiities in anHMM
tagger). An additional parameter for both of these featigahe size of the n-
grams. Just as for the level of grandparenting, the optirlaievof this parameter
is something which must be determined empirically.

After extensive grid search across different feature coatimns, we found
that using 3-level grandparenting and 3-grams over lexypas, leaving out active
edges and constituent weights, resulted in the model wétotlerall best perfor-
mance. For a more detailed review of the contribution of tidividual feature
types, see Velldal (2008). Note that there are in fact otbatuire configurations
that result in similar ranking performance. However, thegmels include a lot

2By grandparentingwe refer to all use of ancestor information, regardless aftiwér we for the
current node are including a parent, grandparent, greatipeaent, etc.
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Typeld Sample Features

(0 subjh hspec third_sg_fin_verb)
(1 A subjh hspec third_sg_fin_verb)
(0 hspec det_the_le sing_noun)
(1 subjh hspec det_the_le sing_noun)
(2 A subjh hspec det_the_le sing_noun)
(0 subijh third_sg_fin_verb)
(0 subjh hspec)

(1 subjh hspec det_the_le)
(

(

(

(

(

(

(

1 subjh hspec sing_noun)

1 n_intr_le dog)

2 det_the_le n_intr_le dog)

3 < det_the_le n_intr_le dog)
1 n_intr_le)

2 det_the_le n_intr_le)

3 < det_the_le n_intr_le)

A A DA WWWDNDNNDNRPEPRPRPREPPREPPR

Table 2: Examples of structural features extracted frond#révation tree in Fig-
ure 4. The first column identifies the feature template cpording to each exam-
ple; in the examples, the first integer value is a parametkyatnre templates, i.e.
the depth of grandparenting (types 1 and 2heagram size (types 3 and 4). The
special symbolg\ and< denote the root of the tree and left periphery of the yield,
respectively.

more active features without being able to show statigyicagnificant improve-

ments. Given that other things are equal, it is good prattickecide by the prin-
ciple of Occam’s Razor. For our final configuration we therefchose to use the
simplest model (i.e. the one with fewer active featureshefdnes with equivalent
evaluation scores.

There are also other parameters beside the feature speaifscghat need to
be tuned through repeated experimentation. In partichlarvalue of prior can
have a major impact on model behavior, both in terms of thelbmurof iterations
it takes to reach convergence and in terms of the rankingpednce of the result-
ing model. For the feature configuration used here, we obdeive best ranking
performance for? = 8 x 10~* (determined through ten-fold cross-validation on
the development set).
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Results for the Log-Linear Ranker

Development Held-Out
top 5-best top 5-best
Accuracy 72.11% 88.82% 71.31% 89.34%
WA 0.941 0.984 0.941 0.987
NEVA 0.943 0.985 0.939 0.983

Table 3: Results for the best performing log-linear mod@excribed above, tested
on the generation treebanks constructed forLtheon development data and the
held-out test data (as summarized in Table 1). The resultthéodevelopment
set are obtained through ten-fold cross-validation. Initamfdto recording local
subtrees of depth one, model features include trigramssadite lexical types
of the preterminal yields, as well as three levels of graneling (i.e. upward
dominating nodes). The variance of the prior is globallytse$ x 10~%. The
column for 5-best lists reports scores that are maximizest twe 5 top-ranked
candidates.

4.2 Results
5 Ranking Using an N-gram L anguage M odel

The use ofh-gram language models is the most common approach to istaitist-
lection in generation (Langkilde & Knight, 1998b; and Wh{g904); inter alios).
In order to better assess the relative performance of treimdimative treebank
model presented above, this section describes the redudisptying ann-gram
language model our ranking task. Using the freely availate sLM Toolkit®
(Clarkson & Rosenfeld, 1997), we trained a 4-gramn (using Witten-Bell dis-
counting) on an unannotated version of the British Natidbafpugé (BNC), con-
taining roughly 100 million words. Note while = 4 might seem like a high
value—the standard choice being to only consider bigrams; i= 2—the model
also includes a back-off mechanism to lower-order modelsases of unseen-
grams. The vocabulary of our model comprises 25,000 wotlypextracted on
the basis of theocoN development data in order to make the model more atuned
to the domain. Note that all of the model parameters have bagsfully tuned
to achieve the best ranking permormance with respect todten data. For de-
tails on the effects of varying the orderof using different discounting strategies,
vocabulary size, etc., see Velldal (2008).

Given ann-gram language modei,,, we compute the score of a given real-

3For more information, seét t p: / / ww. speech. cs. cnu. edu/ SLM t ool ki t. ht m .
4For more information, seét t p: / / www. nat cor p. ox. ac. uk/ .’
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ization as the (log of the) probability of its surface ford, = (w1, ..., w),
defined as

k
an(wi,j|wi,j—m ey Wijo1) (5)
j=1

Note that, as the realizations in our symmetric treebané& aislude punc-
tuation marks, these are also treated as separate tokeime bgnguage model.
Furthermore, the strings presented toltkealso include additional pseudo-tokens
marking the sentence boundarigs¢(andi/s¢). Although this way of conditioning
on the sentence boundaries immediately makes sensevialyitt is also necessary
from a technical point of view, as it ensures that we get a @rgpobability dis-
tribution over all strings independent of length. Othernfsrof normalization that
we applied prior to training include automatic mapping legw common English
and American spelling variants (as thRG generates American English, while the
BNC, of course, is British), and normalization of numerical mgsions.

5.1 Results

The results of applying them is summarized in Table 4 below. We see that the
exact match accuracy of then is 53.75% for the development set arii®.60%
for the held-out set. Although thew was in fact trained on the separa&®c
data, some drop in performance when moving from the devetopreet to the
held-out set was still to expected as the model vocabulart least partly based
on the former. Furthermore, although we see that the acgwfathe LM is well
above the random choice baselir#.05% and 27.28% for the dev. and held-
set respectively), it is still far below the performance lud tonditional log-linear
ranker. Thep-value computed for these differences using a two-tailqaliegtion
of the non-parametric Sign-Test show that they are stedibfi significant at the
0.05 a-level. Comparing the results in Table 3 and Table 4 we seketliealog-
linear model also outperforms then with respect to both the string-similariry
metrics. Again we find that the differences are indeed iy significant for
p < 0.05, using the (two-tailed) matched pairs Wilcoxon Matched$*Signed-
Ranks Test (which is similar to the Sign-Test but additignakes themagnitude
of differences into account, not just theection).

6 Manual Evaluation

In assessing the relative performance ofthgram model and thelaxent model,
this chapter has so far only referred to the use of automaticcodjective met-
rics such exact-match accuragyy, andNEVA. However, we have also performed
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Results for the 4-gram LM Ranker

Development Held-Out
top 5-best top 5-best
Accuracy 53.75% 82.64% 52.60% 81.61%
WA 0.907 0.986 0.904 0.981
NEVA 0.907 0.984 0.887 0.977

Table 4. Results for the best performing language model sitbed above, tested
on the generation treebanks constructed forLtheon development data and the
held-out test data (see Table 1). Tihe is a 4-gram model trained on tlBaIC us-
ing Witten-Bell discounting and a vocabulary of 25,000 tkend words (partially
extracted from the development data). The column for 5-listreports scores
that are maximized over the 5 top-ranked candidates.

a round of manual evaluation, carried out by a panel of eateand anonymous
judges. With the kind assistance of Emily M. Bender, a grdigegenMA students
within thethe Professional Master’s in Computational Linguisticogamat the
University of Washington were recruited to judge the relatjuality of alterna-
tive generator outputs. The judges—all native speakersngfifh—were given a
guestionnaire with a set of test items from the held-out,datd asked to assign a
relative rank order to lists of candidate realizations asseh by different models.

The questionnaire itself was compiled as follows. We st isolating all
test items in the held-out data for which the and themaxent model disagree
with respect to their top-ranked candidate, recording trelilates chosen by the
respective models. For all of these items we then also redattte corresponding
reference from the underlying treebank, in addition to alcanly selected candi-
date. This resulted in an evaluation set of 73 test itemd) wjit to four distinct
alternative realizations for each. For more details on hosvquestionnaire was
compiled and presented, please refer to Velldal (2008, ch. 8

Now, for each list of alternative strings in the resultinglesation form, the hu-
man judges were asked to rank them relative to each otherdaegdo which they
considered to sound more natural. The judges where insttuctassign each can-
didate a rank position on a scale from 1 to 4 (or the number dicates included
in the particular list), also allowing for ties. In other wag; the evaluators where
not asked to make any absolute assessments of the qualiiglofrealization, but
only to assign a relative rank order on the sets of alteraestiv

For each of the 73 items in the test set, the judges assignethtave rank
order to the candidates picked by the different models. Byreing all of these
per-itemrank values, we can, for each judge, obtaisyatem-levetank order on
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the four models themselves. By further summing the systamlklrank values,
we can obtain global system-level rank order. This is what is shown in Table 5
below, where the models are sorted according to their rallesaFor each model
the data columns show, from left to right; the total sum of-ipem rank values
assigned by all judges; the average sum of rank values pge;juhd finally the
average per-item rank value. Recall that a lower score abelchigher rank (i.e.

a higher relative quality according to the evaluators). #&lear from Table 5,
the reference sentenceSdld) were deemed to have the highest overall quality.
Although this particular outcome was what we had anticipat# course, it is a
reassuring result nonetheless, as the reference senfensgde the basis for the
automatic and quantitative evaluations that we othervdiean, and even provide
the basis for how the training data itself is defined for theedminative learners.
In this sense, the fact that the reference sentences clgarygl out as the best
candidates according to the human evaluators is sometmanfutrther validates the
assumptions underlying our symmetric treebanking metloggcAlso as expected,
we see that the random choice baseline receives the lowestga/rank. Finally,
the two middle rows of the Table 5 hold the most interestirsyits. We see that the
candidates chosen by thiexent treebank model are on average judged to be better
than those of the-gram language model. The candidates selected byighxent
model receives an average rank positiornl 86, while theLm ranker receives an
average rank position @f38.

Sumof Average Average
M odel Ranks Sum Rank

Gold 674 96.3 1.319
MaxEnt 951 135.9 1.861
LM 1215 173.6 2.378

Baseline 1304 186.3 2.552

Table 5: Summary of rank values assigned by the human evaduat

It is also worth noting that the relative rank order of thefatiént systems as
assigned by the human judges, is actually the same as th@rdekassigned by
the automatic metrics we use, such as edit distance and medch accuracy. In
this sense, the results of the manual evaluation effortisegable 5 are not only an
evaluation of model performance, but indirectly also aresssent of the quality
of the automatic evaluation metrics. If the relative ordgrresulting from the
human evaluation was different from the ordering obtairedugh the automatic
evaluation methods, we would have good reasons to be sogpiof the latter.
Fortunately, the outcome of the human evaluation providasith no such reason
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for concern.

Animportant part of interpreting any human evaluation lts98 to measure the
level ofinter-annotator agreemeniNow, the different rank scores shown in Table 5
seem to be separated by quite solid margins, already gidmgpad reasons to trust
the significance of the result. However, we have also conakageeral independent
measures that also indicate that the level of agreement @nenevaluators is
indeed quite high. For any candidate sentence given top bgrdome judge for
a given item, the average number of judges who have givenaime £andidate
top rank is 4.5 out of 7. For the candidate realization that veanked top by the
most judges for a given item, the average number of judgeseayy is 6.0 out
of 7. Both of these quite intuitive measures seem to inditzé the evaluators
tend to agree quite strongly on the judgments that they matkeregards to their
top-ranked sentences. However, in order to get a betteressjun of the inter-
annotator agreement on the overall rankings, we also cad@gearman’s rank
correlation coefficientdenoted ag. Admittedly, having only 4 different ranking
levels is a bit too few for correlation measures to really mamngful. However,
the coefficient still gives some impression of the level ofeggnents among the
judges.

The p coefficient is a non-parametric rank statistic for varialeat are mea-
sured at the ordinal level and is equivalent to Pearson'iciemt applied to ranks
instead of raw scores. Ldt be the difference between the ranks of each candidate
for a given test item. Spearman’s rank correlation coefficie then computed as

n 2
p=1- =¥ ©
n(n? —1)
where in our case we will have = 4. Note that ties are handled in the same
manner as for the Wilcoxon test, i.e. by using the arithmatierage of the cor-
responding ranks. To use the example from above, where we kad, b = 2,
c = 2, andd = 4, the normalized ranks would now lae= 1, b = 2.5, ¢ = 2.5,
andd = 4.

Although the correlation coefficient is based on a pairwismgarison of the
judgments of two evaluators, we can easily extend this bypedimg, for each
judge, the average correlation towards all the other judgésally, note that the
correlation coefficient ranges from1 for perfect negative correlation, through
zero for totally independent judgments,ltéor perfect positive correlation.

Table 6 shows Spearman’s rank correlation coefficient caeapior all thema
students participating in the evaluation. The first colunmpdy enumerates the
judges. The second column shows the correspongicglculated as the average
pairwise correlation for all items in the evaluation settHa third column the coef-
ficients are computed on the system-level. Using rank vahatsorrespond to the
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Average Rank Corréelation

Judge ItemLevel System Leve

1 0.687

2 0.781

3 0.727

4 0.701
5
6
7

0.695
0.747
0.748
All 0.727

PlRrRrRrRrRrRPR

Table 6: Average Spearman’s rank correlation coefficianééah human evaluator.

relative rank ordering seen in Table 5, we here compute thage pairwise corre-
lation coefficients with respect to overall judgments althetmodels themselves.
The bottom row in the table shows the corresponding totakaes.

The average Spearman correlation coefficient for all judgesthe entire eval-
uation set isp = 0.73. Now, although this value would typically be taken to in-
dicate a fairly high degree of agreement (recall the boynds|[—1, 1]), the fact
that we only have four levels of ranks involved means thattillecannot say that
this figure is statistically significant. However, we alsonputedp on the system-
level. This was done by averaging all the pairwise correfetibetween all judges
with respect to the relative rank order of the different med& his resulted in a
correlation coefficient op = 1. In other words, when looking at the system-level,
the inter-annotator agreement could not possibly be arlyenjgand this time the
figure is indeed statistically significant (at th®5 level).

As seen in Table 5, the log-linear model seems to outrankthéy a good
margin according to the human judgments. In order to morecthr contrast the
differences in ranks for these two models, we also appligdtesscal significance
test to their rank values in isolation. This was carried aufalows. For each
item in the questionnaire we assign a scorg-dfor —1, depending on whether the
average rank given to theaxent candidate is higher or lower than that given to the
LM candidate. This results in a sequence of 73 Bernoulli trize for each item
in the evaluation set, to which we then apply a two-tailechSigst. This results in
a p-value ofp = 0.012, showing that the differences in the human rankings for the
n-gram-based language model and the log-linear treebanlelnaod statistically
significant atn. = 0.05.
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7 A Combined Mode€

Results for the Log-Linear Ranker vy feature

Development Held-Out
top 5-best top 5-best
Accuracy 74.25% 91.80% 73.98% 92.94%
WA 0.944 0.986 0.944 0.992
NEVA 0.946 0.987 0.941 0.988

Table 7: Results for the best performing log-linear modat thcludes them as a
separate feature. Tested on tlison generation treebanks of Table 1. The results
for the development set are obtained through ten-fold evaldation. TheLm
feature corresponds to the model tested in Table 4, whileghmining features
are the same as in the log-linear model of Table 3. As befbmstores of the
5-best column are maximized over the 5 top-ranked candidate

8 Summary
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