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1 Introduction

In this chapter we consider the issue ofrealization ranking, i.e. the problem of
ranking the target sentences produced by the generator. Anygrammar-based natu-
ral language generation (NLG) system with sufficiently wide coverge is deemed to
face the problem ofindeterminacy. This problem concerns the fact that the rules
of the grammar often will admitt many possible surface realizations for a given
semantic input. For a given targetMRS passed on from transfer, theLKB generator
(see Chapter??) used inLOGON will typically produce hundreds—sometimes even
thousands—of different English surface realization. The sources for this indeter-
minacy are many and include phenomena such as the optionality of complemen-
tizers and relative pronouns, permutation of (intersective) modifiers, lexical and
orthographic alternations, and (if uncerspecified in theMRS) choices pertaining to
topicalization and passivization.

All of the alternative realizations of a givenMRS will be what we regard as
paraphrases, meaning that they are all semantically equivalent, at least in a strict
truth-conditional sense. Although all of these paraphrases will also be well-formed
according to the underlying grammar (i.e. the LinGOERG, as described in Chap-
ter??), some of them will usually sound much more natural and fluentthan others.
As pointed out by, among others, Abney (1996), whereasgrammaticality(at least
in computational terms) is an absolute or two-valued property (a given sentence ei-
ther is or is not grammatical according to a given grammar),naturalnessis a matter
of degree. Moreover, as the coverage and scope of the underlying generation gram-
mar increases, so does typically also the number of realizations that it can produce
for a given meaning.

We see that there is clear need for a principled and scalable method for automat-
ically scoring and ranking the competing realizations. In this chapter we describe
the type of data-driven model that we employ for this task within LOGON. In short,
we show how it is possible train discriminative models for realization ranking in
a similar manner as when training models for statistical parse disambiguation. By
introducing the notion of ageneration treebank, we are able to adapt and extend
on the methodology of state-of-the-art statistical parsing and statistical unification-
based grammars, thus making it applicable to the context ofNLG. We also compare
the performance of our novel discriminative treebank modelto the performance of
a more traditionaln-gram language model, as well as a model that combines both
types of information.

The rest of this chapter is organized as follows. In the next section we first pro-
vide some more background on the problem of realization ranking and the types
of models that we employ. Section 3 describes the treebank data that we use for
trainig our discriminative models, including the notion ofa generation treebank.
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In Section?? we then present various evalutation results for the models,using
approaches based on both human judges and automatic metrics. We finally sum-
marize our findings and give some concluding remarks in Section 8.

Before we go on, it is important to note that the primary focusof this chapter
is restricted to the problem of ranking generator outputs. Although the particular
generator we use is embedded in the overalLOGON MT system, our ranking task is
restricted to the context of generation. This is an important distinction. It means
that we are not concerned with ranking sentences as translations of a foreign source
sentence, but rather as realizations of a semantic representation. The problem of
finally ranking the output translations (conditioned on theinput source) is deferred
to Chapter??, where we describe a discriminative model for end-to-end reranking.
This reranking model of Chapter?? incoporates the realization ranker described in
the current chapter as a separate feature, in addition to several other global features
of the target sentences.

2 Background

Figure 1 shows some examples of alternative outputs when generating from a sin-
gle (underspecified)MRS using the LinGOERG. We see that, while a linguistic
precision grammar goes a long way towards guaranteeing grammaticality of all re-
alizations (to the level of providing the so-calledthat filter on subject extraction,
for example), clearly some outputs are far more fluent than others. For the (non-
deterministic) items in the test data that we consider in this chapter we get close to

f ixmerealizations on average, where the maximium isf ixmecandidates for a single
input MRS (this maximum, however, is specific to our data set and could well be
larger).

The traditional approach to ranking alternative generation outputs is to score
the surface strings using a generativen-gram-basedlanguage model(LM). An n-
gram model factorizes the probability of a sentence into theproduct of the indi-
vidual word probabilities, and each word probability is only conditioned on the
n − 1 words preceding it in the sequence. The approach of using ann-gramLM

for realization ranking was pioneered in the hybridNLG system Nitrogen (Knight
& Hatzivassiloglou, 1995; Langkilde & Knight, 1998a) and its successorHALogen
(Langkilde, 2002), in which the strings are scored according to abigram model
(i.e. n = 2). Similar approaches based onn-gram statistics has later been used in
many other generator systems, such as those described by Bangalore & Rambow
(2000), Ratnaparkhi (2000), White (2004), Habash (2004), and others.

One advantage of usingn-gramLMs is that they are relatively easy to estimate,
and they can be trained on “raw” unannotated text. However, there are also many
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remember that dogs must be on a leash
remember dogs must be on a leash
on a leash remember that dogs must be
on a leash remember dogs must be
a leash remember that dogs must be on
a leash remember dogs must be on
dogs remember must be on a leash

Figure 1: Example sets of generator outputs using the LinGOERG. Unless the
input semantics is specified for aspects of information structure (e.g. requesting
foregrounding of a specific entity), paraphrases will include all grammatically le-
gitimate topicalizations. Other sources of generator ambiguity include, for ex-
ample, the optionality of complementizers and relative pronouns, permutation of
(intersective) modifiers, and lexical and orthographic alternations.

limitations inherent to then-gram approach. The most obvious such limitation, as
already pointed out by Langkilde & Knight (1998b), is that anordinaryn-gram lan-
guage model cannot capture long-range dependencies and dependencies between
non-contiguous words. An important part of this problem is,of course, the fact
that a purely surface orientedn-gram model will fail to capture dependencies that
show a structural rather than sequential regularity. The deeper structures of the
strings are ignored entirely. Neither can the model capturedependencies that hold
between more thann words. These are some of the reasons why it seems reason-
able to assume that the quality of the generator rankings canbe improved if we aim
to go beyond the abilities of the standardn-gram models, and try to incorporate
more information about the linguistic structure of the realizations.

The realization ranking incorporated inLOGON follows a rather different route
and draws heavily on previous research on a different but related ranking task;
statistical parse selection. Compared to the field ofNLG, models for statistical
ranking have received a lot more attention within the area ofnatural language un-
derstanding (NLU) or parsing. Due to its significantly longer history of research,
the field of statistical parsing is in many ways much more mature than the field of
statistical generation, and statistical parse selection models have proved especially
well-suited for capturing soft constraint that are difficult to encode directly in the
grammar or to define in terms of explicit rules.

In our case, working with grammar-based generation using a linguistically fine-
grained and wide-coverageHPSGgrammar such as theERG, there are certain areas
within statisticalNLU that immediately stand out as particularly interesting. The
work on learningstochastic unification based grammars(SUBGs), as pioneered by

5



Abney (1997) and Johnson, Geman, Canon, Chi, & Riezler (1999), are among
these. As any large-scale wide-coverage grammar of a natural language is destined
to be massively ambiguous, there is an immediate need to be able to efficiently
order the various hypotheses in a systematic way. Johnson etal. (1999) show how
conditional log-linear modelscan be used for efficiently estimating statistical parse
disambiguation models for large-scale unification-based grammars. As further de-
scribed in Section 4 below, log-linear models are defined in terms offeature func-
tionsthat can be designed to record arbitrary properties of the structures that we are
interested in modeling. Commonly the features are set up to record the grammat-
ical productions in the parse trees, and the estimation of the model parameters is
then carried out on the basis of atreebank. Generally speaking, a parse treebank is
a corpus where strings have been annotated with grammaticalstructure. In the case
of treebanks based on unification grammars, the sets of available parses licensed by
the grammar for each string have typically been manually disambiguated in order
to indicate which is considered to be preferred or optimal. When estimating a con-
ditional log-linear model parse selection, as in the work byJohnson et al. (1999),
the models parameters are chosen to maximize the probability of the preferred
parses relative to all the other non-preferred parses.

The tasks of ranking parses and ranking realizations can be seen to closely par-
allel eachother, and in many ways there is a relation ofinverse similaritybetween
these two problems. While parsing attempts to recover the underlying meaning and
structure of a given surface utterance, generation attempts to express a given mean-
ing as a surface utterance. In both directions of processing, however, the underlying
grammar will usually license many possible hypotheses, andcorrespondingly there
is a need for ordering these hypotheses in a principled and systematic manner. We
see that the two ranking tasks parallel each other closely, and in both cases the goal
is to find the optimal output structure under some set of constraints.

In extension of the research pioneered by Abney (1997) and Johnson et al.
(1999), the literature contains many other examples of applying log-linear models
for the problem of parse disambiguation, such as the work by Osborne (2000), Mal-
ouf (2002), Riezler et al. (2002), Miyao & Tsujii (2002) and Malouf & van Noord
(2004), to name a few. However, our starting point for adapting this modeling ap-
proach for the purpose of realization ranking, is provdidedby the work of Toutanova,
Manning, Flickinger, & Oepen (2005) on building discriminative log-linear mod-
els for parse disambiguation on theHPSG-based Redwoods treebank (Oepen et al.,
2002). One reason why this work forms an especially well-suited starting is that
theLOGON treebanks can effectively be viewed as a separate branch of Redwoods.
As described in Chapter??, Redwoods is annotated in accordance with theERG,
i.e. the same grammar that we use for generation withinLOGON, including seman-
tic analysis in the form ofMRS. As further detailed in Section 4 below, the core
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set of features included in our log-linear realization rankers will also be defined as
extensions to the feature set used by Toutanova et al. (2005), viz. various structural
features defined over the grammatical derivation of the realizations. However there
are a few crucial modifications that need to be done with respect to the treebank
data before we are in a position to train discriminative models for realization rank-
ing. The next section describes the notion of asymmetric treebank, including the
important subset termed ageneration treebank, as introduced by Velldal, Oepen,
& Flickinger (2004).

3 Symmetric Treebanks

As noted above, the discriminative parse selection models are trained by maximiz-
ing the probability of all the preferred analyses relative to all the alternative and
non-preferred analyses. This gives us a statistical model for the distribution of
parses conditioned on a given input string. For the purpose of realization ranking,
however, we are interested in modeling a somewhat differentdistribution, viz. the
distribution of strings given the semantics. Estimating such a model would mean
maximizing the probability of the preferred realizations relative to all the alterna-
tive and non-preferred realizations. However, as there is an implicit directionality
inherent to the annotations of traditional parse-orientedtreebanks, they do not im-
mediately offer the kind of training data we require. The optimality relations en-
coded in these treebanks are conceived as mappingsfrom stringsto analyses. This
relation is represented in Figure 2(a) below, where the arrow represents the opti-
mality relation and the other arcs correspond to competing (sub-optimal) parses. In
other words, the arrow points from the observed string to thedisambiguated gold
analysis. (To best understand this figure it should be read asif we had zoomed in
on a single item in the treebank.)

As argued by Velldal et al. (2004) and (Velldal, 2008), however, for the pur-
poses of training a statistical “generation grammar”, it seems reasonable to make
the assumption that the treebanked strings can also be treated as optimal realiza-
tions of the treebanked semantics. In other words, the suggestion is to view the
optimality relations in the treebank asbidirectional or symmetric. What this ef-
fectively means in practise, is that we take the original sentences in the corpus to
define the reference realizations for the corresponding treebanked semantics. As
described in (Velldal et al., 2004) and Velldal (2008), thisassumpiton forms the
basis of a fully automated procedure for contsructing the training data required
for a discriminative realization rankeron the basis of an existing Redwoods parse
treebank (Velldal et al., 2004). We outline this procedure below.

Recall that theMRS component of theHPSGannotations in the Redwoods-style
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treebanks can also be used as input to theLKB generator. This means that we can
take the semantics of the originally treebanked analysis and exhaustively generate
all the possible paraphrases that express this meaning, as licensed by the underly-
ing grammar. Given the assumption of bidirectional optimality, the generated para-
phrases matching the original string in the underlying corpus can then be labeled
as the optimal or preferred candidates. This results in setsof relations as those
illustrated in Figure 2(b). This kind of expanded treebank resource is what Velldal
et al. (2004) termed asymmetric treebank. A symmetrized treebank consists of

(i) gold-labeled pairs〈utterance, analysis〉 that are considered bidirectionally
optimal,

(ii) the set of competing analyses for eachutterance, and

(iii) the set of competing paraphrases for eachanalysis.

Note that the bidirectional optimality pertains to the level of strings and semantics,
which are the input to the parser and the generator respectively.

In contexts where we need to be clear about the specific “side”of a symmet-
ric treebank that we are referring to, we sometimes use the terms parse treebank
andgeneration treebank(Velldal et al., 2004; Velldal & Oepen, 2005). The side
corresponding to the generation treebank is isolated in Figure 2(c). This is exactly
the data that we need in order to train a realization ranker ina similar way as for
discriminative parse selection models.

A more detailed step-by-step description of how we construct the generation
treebanks used for training our rankers can be found in Velldal (2008). In addition
to the two steps oulined above (i.e. paraphrasing the original treebank items fol-
lowed by identification of the references), a third step correponds to pruning the
resulting data items. This simply amounts to removing itemsfor which there is
no interesting indeterminacy and therefore are not relevant for learning (e.g. items
with only a single realizations or items where all the realizations have identical
yields). In sum then, the procedure for deriving a generation treebank on the basis
of an existing parse treebank consists of three main steps:

(i) Paraphrasing, i.e. exhaustively generating all the possible realizations for
each goldMRS.

(ii) Labeling, i.e. matching the generator output against the original treebanked
strings to identify gold realizations.

(iii) Pruning, i.e. throwing away items that are not relevant for learning (e.g. items
with only one realization).
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Figure 3: Single-item view of dif-
ferent types of treebanks. Arrows
indicate preference or optimality
relations. (a) Parse treebank of ut-
terances paired with possible anal-
yses. (b) Symmetric treebank
including all paraphrases of the
treebanked semantic analyses, and
assuming bidirectional optimality
relations. (c) Generation treebank
of semantic analysis paired with
possible realizations.

Before we move on to look at some properties of some actual data sets cre-
ated with this procedure, it is worth spending a few more comments on the im-
plementation of the second step above, the labeling of references. When it comes
to identifying the references on the basis of the originallytreebanked strings, the
matching could potentially be done on several different levels. One option could be
to match the fullHPSGsigns, or the corresponding derivation tree. Another option
is to match the surface strings themselves. For the experiments reported in this
chapter, however, the matching is done on the level of thepreterminal yieldsof the
generated derivations. As further described in relation tothe feature functions of
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our log-linear models, presented in Section 4, the preterminal yields correspond to
lexical identifiers of theERG. Performing the matching at this level means that all
realizations that have the same yield will be treated as equivalent. This furthermore
means that we often end up labelingmultiple realizations as gold for a single in-
put MRS. Finally, note that we migth also “loose” a couple of items inthe labeling
step, due to the fact that we are not always able to re-generate any realizations that
matches the original input in the parse treebank.

Table 1 summarizes the result of “symmetrizing” the treebanked LOGON de-
velopment data and held-out test data, creating the corresponding generation tree-
banks. We see that the data items are broken down along several dimensions. The
items are first split into bins according to their number of generated realizations
(i.e. what would correspond to “ambiguity rate” in parsing terms). For each bin
the table then shows the corresponding number of items, average sentence length,
average number of realizations, and average number of realizations labeled as gold.
As can be seen from the tables, the total average length of the3921 candidate real-

LOGON Development Data

Aggregate Items Words Trees Gold Baseline
100 ≤ n 369 27.5 360.0 8.0 3.33
50 ≤ n < 100 230 24.7 73.5 4.9 6.64
10 ≤ n < 50 1144 20.6 22.5 3.3 17.08
5 ≤ n < 10 868 15.3 6.9 2.2 32.13
1 < n < 5 1310 13.9 3.2 1.4 45.64

Total 3921 18.1 47.3 3.0 28.05

LOGON Held-Out Test Data

Aggregate Items Words Trees Gold Baseline
100 ≤ n 17 26.0 572.5 7.8 2.20
50 ≤ n < 100 24 24.1 78.1 5.6 7.55
10 ≤ n < 50 83 20.0 23.4 3.2 15.86
5 ≤ n < 10 57 14.6 6.7 2.1 32.21
1 < n < 5 88 14.0 3.1 1.4 45.08

Total 269 17.6 52.8 2.9 27.28

Table 1: Some core metrics for the generation treebanks we use for training and
testing. The data items are aggregated relative to their number of realizations. The
columns are, from left to right, the subdivision of the data according to the number
of realizations, total number of items, average string length, average number of
realizations, average number of references, and finally thebaseline for expected
accuracy by random choice.
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izations in theLOGON generation treebank we use for development is 18.1. For the
269 items in held-out data set the average string length is just slightly shorter, at
17.6. Note that these figures refer to the length oftokenizedstrings, which means
that for example punctuation is treated as separate units. In the development data,
we see that the average number of generated hypotheses per item is 47.3, while the
number is 52.8 for the held-out data. Not surprisingly, we find a higher number of
candidate realizations for the items which also have a longer average string length.

Although the degree of non-determinism, i.e. the average number of available
candidates, is obviously an important factor characterizing the difficulty of the
ranking task, another important factor is the number of candidates labeled as gold,
as described in Section 3 above. This figure is around three for both data sets. On
the basis of these of these two properties, we can compute arandom choice base-
line to more directly indicate the difficulty of the ranking task.This corresponds
to the average exact match accuracy we could expect to obtainif we were to se-
lect candidate realizations completely at random. As we seefrom the final column
of Table 1, the baseline figure for the full development treebank is28.05%, while
slightly lower for the held-out data, at27.28%.

In the following sections we look at the actual models we apply for the real-
ization ranking task. We first present the details of the log-linear model, including
the feature types, and look at the corresponding results. Inorder to also asses
the performance of our discriminative treebank model compared to the traditional
apporach of usingn-gram language models, Section 5 also reports on some exper-
iments of ranking using anLM trained on the British National Corpus (BNC). All
models are evaluated according to three automatic metrics:

- Exact match accuracy: The percentage of times that the top-ranked sentence
is identical with the reference sentence).

- Word Accuracy (WA): String similarity-measure based on the so-callededit
distancebetween a candidate string and a reference.

- NEVA: A reformulation ofBLEU (Papineni, Roukos, Ward, & Zhu, 2002)
provided by Forsbom (2003) in order to make it well-defined asa sentence-
level metric. Computed as the arithmetic mean of the rawn-gram precision
scores.

4 Ranking using a Discriminative Log-Linear Model

The flexible framework provided by log-linear modeling has been widely used for
a range of tasks inNLP, including parse selection (e.g. Johnson et al., 1999; Malouf
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& van Noord, 2004) and reranking for machine translation (e.g. Och et al., 2004).
A model is specified by a set of real-valuedfeature functions(f ) that describe prop-
erties of the data, and an associated set oflearned weights(λ) that determine the
contribution of each feature. Given a set ofd such feature functions, each observed
pair of semanticss and realizationr is represented as a feature vectorf(s, r) ∈ ℜd,
and a vector of weightsλ ∈ ℜd is then fitted to optimize the likelihood of the train-
ing data. A conditional log-linear model for the probability of a realizationr given
a semanticss, has the general parametric form

pλ(r|s) =
1

Zλ(s)
exp

(

d
∑

i=1

λifi(s, r)

)

(1)

pλ(r|s) =
1

Zλ(s)
exp

(

d
∑

i=1

λifi(s, r)

)

(2)

whereZλ is a normalization term defined as

Zλ(s) =
∑

r′∈Y (s)

q(r′|s) exp

(

d
∑

i=1

λifi(s, r
′)

)

(3)

andY (s) gives the set of all possible realizations ofs.
The estimation1 of theλ-parameters seek to maximize the (log of) a penalized

likelihood function as in

λ̂ = arg max
λ

log L(λ) −

∑d
i=1 λ2

i

2σ2
(4)

whereL(λ) is the conditionalizedlikelihood of the training data, computed as
L(λ) =

∏N
i=1 pλ(ri|si) (Johnson et al., 1999). The second term of the likelihood

function in Equation (4) is a penalty term that is commonly used for reducing the
tendency of log-linear models to over-fit, especially when training on sparse data
using many features (Chen & Rosenfeld, 1999; Johnson et al.,1999; Malouf &
van Noord, 2004). More specifically it defines a zero-mean Gaussian prior on the
feature weights which effectively leads to less extreme values. Given a log-linear
modelpλ, the scores used for ranking the candidate realizations canbe computed
simply asscore(r) =

∑

i λifi(r) since we are only interested in the relative rank
order.

1We use the TADM open-source package (Malouf, 2002) for training, using its
limited-memory variable metricas the optimization method. For more information see
‘http://tadm.sourceforge.net/’.
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4.1 Features and Tuning

In the log-linear parse selection models build by Toutanovaet al. (2005), the fea-
tures are defined overHPSGderivation trees. This is the fundamental data type
of the Redwoods treebanks. The internal nodes of a derivation tree correspond to
identifiers of construction types in the underlyingERGgrammar, such as the head-
complement or head-adjunct schemas, while the preterminalyields correspond to
identifiers of the lexical entries. For the purpose of feature extraction, however,
these latter preterminal lexical identifiers are first mapped to the more abstractlex-
ical entry types(LE-types) within the grammar. A sample derivation tree for the
sentenceThe dog barksis shown in Figure 4, where the pre-terminal nodes have
first been mapped to the such abstract lexical types.

subjh

�
�

�
�

�

H
H

H
H

H

hspec

�
�

�

H
H

H

det the le

the

sing noun

n intr le

dog

third sg fin verb

v unerg le

barks

Figure 4: SampleHPSGderivation tree for the sentencethe dog barks. Phrasal
nodes are labeled with identifiers of grammar rules, and (pre-terminal) lexical
nodes with class names for types of lexical entries. Note that, while the native
derivation tree format has pre-terminals corresponding tolexical identifiers, this
figure shows a somewhat modified format where these identifiers are mapped to
one of theERG’s abstract lexical types. This is the representation that forms the
basis of our treebank features, as exemplified in Table 2.

The basic feature set of our discriminative realization rankers is defined in the
same way as for theCPCFG-Smodel of Toutanova et al. (2005). In this set-up, each
feature captures a local sub-tree from the derivation, limited to depth one. In other
words, these features record the particular productions observed in a given tree,
such ashspec → det the le sing noun. In Table 2 these features correspond to feature
template # 1. Thevalueof a given type # 1 feature corresponds to the number of
times a given expansion occurs in the tree.

We have also experimented with several extensions to this feature set. For
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example, to reduce the effects of data sparseness, we introduced a feature type # 2
as seen in Table 2, which provides a back-off mechanism for the configurational
features above. While the type # 1 features record the full sequence of daughters
in the local sub-trees, the type # 2 features reduce this to only one of the daughters
in turn. We sometimes refer to these features asactive edgefeatures, in analogy to
the notion of active edges in chart-based generation/parsing. Note that, since the
context that gets recorded is reduced (as compared to the type # 1 features), there
will also be significantly fewer unique features instantiating this template, while
the total number of occurrences of each of these features will be correspondingly
higher.

Conversely, to facilitate sampling oflarger contexts than just sub-trees of depth
one, feature template # 1 also allows for various degrees ofgrandparenting.2 By
specifying an additional parameter to the template, the recorded information can be
extended to include various levels of ancestor annotation.This ancestor parameter
is available also for the active edge features (type # 2), which means that, for a
given node, we extract a non-branching path through the treethat includes a single
daughter together with an upward chain of dominating nodes.In Table 2, the level
of grandparenting is indicated by the first integer in the instantiated type # 1 and
# 2 features. Note that what is the optimal maximum-level of grandparenting is
determined empirically through experimentation.

In addition to the dominance-oriented features defined above, our models also
include features that are more linearly oriented. The features of type # 3 and
# 4 recordn-grams of lexical types, extracted from the pre-terminal yields of the
derivation trees. In loose analogy toHMM part-of-speech tagging, then-grams of
lexical types capture syntactic category assignments. Thedifference between tem-
plates # 3 and # 4 only regardslexicalization, as the former additionally includes
the surface token associated with the rightmost element of each n-gram (again,
this can be seen as loosely corresponding to the emission probabilities in anHMM

tagger). An additional parameter for both of these featuresis thesizeof the n-
grams. Just as for the level of grandparenting, the optimal value of this parameter
is something which must be determined empirically.

After extensive grid search across different feature combinations, we found
that using 3-level grandparenting and 3-grams over lexicaltypes, leaving out active
edges and constituent weights, resulted in the model with the overall best perfor-
mance. For a more detailed review of the contribution of the individual feature
types, see Velldal (2008). Note that there are in fact other feature configurations
that result in similar ranking performance. However, thesemodels include a lot

2By grandparentingwe refer to all use of ancestor information, regardless of whether we for the
current node are including a parent, grandparent, great grandparent, etc.
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Type Id Sample Features
1 〈0 subjh hspec third sg fin verb〉
1 〈1 △ subjh hspec third sg fin verb〉
1 〈0 hspec det the le sing noun〉
1 〈1 subjh hspec det the le sing noun〉
1 〈2 △ subjh hspec det the le sing noun〉
2 〈0 subjh third sg fin verb〉
2 〈0 subjh hspec〉
2 〈1 subjh hspec det the le〉
2 〈1 subjh hspec sing noun〉
3 〈1 n intr le dog〉
3 〈2 det the le n intr le dog〉
3 〈3 � det the le n intr le dog〉
4 〈1 n intr le〉
4 〈2 det the le n intr le〉
4 〈3 � det the le n intr le〉

Table 2: Examples of structural features extracted from thederivation tree in Fig-
ure 4. The first column identifies the feature template corresponding to each exam-
ple; in the examples, the first integer value is a parameter tofeature templates, i.e.
the depth of grandparenting (types 1 and 2) orn-gram size (types 3 and 4). The
special symbols△ and� denote the root of the tree and left periphery of the yield,
respectively.

more active features without being able to show statistically significant improve-
ments. Given that other things are equal, it is good practiceto decide by the prin-
ciple of Occam’s Razor. For our final configuration we therefore chose to use the
simplest model (i.e. the one with fewer active features) of the ones with equivalent
evaluation scores.

There are also other parameters beside the feature specifications that need to
be tuned through repeated experimentation. In particular the value of prior can
have a major impact on model behavior, both in terms of the number of iterations
it takes to reach convergence and in terms of the ranking performance of the result-
ing model. For the feature configuration used here, we observed the best ranking
performance forσ2 = 8 × 10−4 (determined through ten-fold cross-validation on
the development set).
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Results for the Log-Linear Ranker
Development Held-Out

top 5-best top 5-best
Accuracy 72.11% 88.82% 71.31% 89.34%
WA 0.941 0.984 0.941 0.987
NEVA 0.943 0.985 0.939 0.983

Table 3: Results for the best performing log-linear model asdescribed above, tested
on the generation treebanks constructed for theLOGON development data and the
held-out test data (as summarized in Table 1). The results for the development
set are obtained through ten-fold cross-validation. In addition to recording local
subtrees of depth one, model features include trigrams across the lexical types
of the preterminal yields, as well as three levels of grandparenting (i.e. upward
dominating nodes). The variance of the prior is globally setto 8 × 10−4. The
column for 5-best lists reports scores that are maximized over the 5 top-ranked
candidates.

4.2 Results

5 Ranking Using an N-gram Language Model

The use ofn-gram language models is the most common approach to statistical se-
lection in generation (Langkilde & Knight, 1998b; and White(2004); inter alios).
In order to better assess the relative performance of the discriminative treebank
model presented above, this section describes the results of applying ann-gram
language model our ranking task. Using the freely availableCMU SLM Toolkit3

(Clarkson & Rosenfeld, 1997), we trained a 4-gramLM (using Witten-Bell dis-
counting) on an unannotated version of the British NationalCorpus4 (BNC), con-
taining roughly 100 million words. Note whilen = 4 might seem like a high
value—the standard choice being to only consider bigrams, i.e.n = 2—the model
also includes a back-off mechanism to lower-order models incases of unseenn-
grams. The vocabulary of our model comprises 25,000 words, partly extracted on
the basis of theLOGON development data in order to make the model more atuned
to the domain. Note that all of the model parameters have beencarefully tuned
to achieve the best ranking permormance with respect to theLOGON data. For de-
tails on the effects of varying the order ofn, using different discounting strategies,
vocabulary size, etc., see Velldal (2008).

Given ann-gram language modelpn, we compute the score of a given real-

3For more information, see ‘http://www.speech.cs.cmu.edu/SLM/toolkit.html’.
4For more information, see ‘http://www.natcorp.ox.ac.uk/.’
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ization as the (log of the) probability of its surface formwk
i1 = (wi1, . . . , wik),

defined as
k
∑

j=1

pn(wi,j|wi,j−n, . . . , wi,j−1) (5)

Note that, as the realizations in our symmetric treebank also include punc-
tuation marks, these are also treated as separate tokens by the language model.
Furthermore, the strings presented to theLM also include additional pseudo-tokens
marking the sentence boundaries (¡s¿and¡/s¿). Although this way of conditioning
on the sentence boundaries immediately makes sense intuitively, it is also necessary
from a technical point of view, as it ensures that we get a proper probability dis-
tribution over all strings independent of length. Other forms of normalization that
we applied prior to training include automatic mapping between common English
and American spelling variants (as theERGgenerates American English, while the
BNC, of course, is British), and normalization of numerical expressions.

5.1 Results

The results of applying theLM is summarized in Table 4 below. We see that the
exact match accuracy of theLM is 53.75% for the development set and52.60%
for the held-out set. Although theLM was in fact trained on the separateBNC

data, some drop in performance when moving from the development set to the
held-out set was still to expected as the model vocabularly is at least partly based
on the former. Furthermore, although we see that the accuracy of the LM is well
above the random choice baseline (28.05% and 27.28% for the dev. and held-
set respectively), it is still far below the performance of the conditional log-linear
ranker. Thep-value computed for these differences using a two-tailed application
of the non-parametric Sign-Test show that they are statistically significant at the
0.05 α-level. Comparing the results in Table 3 and Table 4 we see that the log-
linear model also outperforms theLM with respect to both the string-similariry
metrics. Again we find that the differences are indeed statistically significant for
p < 0.05, using the (two-tailed) matched pairs Wilcoxon Matched-Pairs Signed-
Ranks Test (which is similar to the Sign-Test but additionally takes themagnitude
of differences into account, not just thedirection).

6 Manual Evaluation

In assessing the relative performance of then-gram model and theMaxEnt model,
this chapter has so far only referred to the use of automatic and objective met-
rics such exact-match accuracy,WA, andNEVA. However, we have also performed

17



Results for the 4-gram LM Ranker
Development Held-Out

top 5-best top 5-best
Accuracy 53.75% 82.64% 52.60% 81.61%
WA 0.907 0.986 0.904 0.981
NEVA 0.907 0.984 0.887 0.977

Table 4: Results for the best performing language model as described above, tested
on the generation treebanks constructed for theLOGON development data and the
held-out test data (see Table 1). TheLM is a 4-gram model trained on theBNC us-
ing Witten-Bell discounting and a vocabulary of 25,000 thousand words (partially
extracted from the development data). The column for 5-bestlists reports scores
that are maximized over the 5 top-ranked candidates.

a round of manual evaluation, carried out by a panel of external and anonymous
judges. With the kind assistance of Emily M. Bender, a group of sevenMA students
within the the Professional Master’s in Computational Linguistics Programat the
University of Washington were recruited to judge the relative quality of alterna-
tive generator outputs. The judges—all native speakers of English—were given a
questionnaire with a set of test items from the held-out data, and asked to assign a
relative rank order to lists of candidate realizations as chosen by different models.

The questionnaire itself was compiled as follows. We started by isolating all
test items in the held-out data for which theLM and theMaxEnt model disagree
with respect to their top-ranked candidate, recording the candidates chosen by the
respective models. For all of these items we then also recorded the corresponding
reference from the underlying treebank, in addition to a randomly selected candi-
date. This resulted in an evaluation set of 73 test items, with up to four distinct
alternative realizations for each. For more details on how the questionnaire was
compiled and presented, please refer to Velldal (2008, ch. 8).

Now, for each list of alternative strings in the resulting evaluation form, the hu-
man judges were asked to rank them relative to each other according to which they
considered to sound more natural. The judges where instructed to assign each can-
didate a rank position on a scale from 1 to 4 (or the number of candidates included
in the particular list), also allowing for ties. In other words, the evaluators where
not asked to make any absolute assessments of the quality of each realization, but
only to assign a relative rank order on the sets of alternatives.

For each of the 73 items in the test set, the judges assigned a relative rank
order to the candidates picked by the different models. By summing all of these
per-itemrank values, we can, for each judge, obtain asystem-levelrank order on
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the four models themselves. By further summing the system-level rank values,
we can obtain aglobal system-level rank order. This is what is shown in Table 5
below, where the models are sorted according to their rank values. For each model
the data columns show, from left to right; the total sum of per-item rank values
assigned by all judges; the average sum of rank values per judge; and finally the
average per-item rank value. Recall that a lower score indicates higher rank (i.e.
a higher relative quality according to the evaluators). As is clear from Table 5,
the reference sentences (Gold) were deemed to have the highest overall quality.
Although this particular outcome was what we had anticipated, of course, it is a
reassuring result nonetheless, as the reference sentencesprovide the basis for the
automatic and quantitative evaluations that we otherwise rely on, and even provide
the basis for how the training data itself is defined for the discriminative learners.
In this sense, the fact that the reference sentences clearlystand out as the best
candidates according to the human evaluators is something that further validates the
assumptions underlying our symmetric treebanking methodology.Also as expected,
we see that the random choice baseline receives the lowest average rank. Finally,
the two middle rows of the Table 5 hold the most interesting results. We see that the
candidates chosen by theMaxEnt treebank model are on average judged to be better
than those of then-gram language model. The candidates selected by theMaxEnt
model receives an average rank position of1.86, while theLM ranker receives an
average rank position of2.38.

Sum of Average Average
Model Ranks Sum Rank
Gold 674 96.3 1.319
MaxEnt 951 135.9 1.861
LM 1215 173.6 2.378
Baseline 1304 186.3 2.552

Table 5: Summary of rank values assigned by the human evaluators.

It is also worth noting that the relative rank order of the different systems as
assigned by the human judges, is actually the same as the rankorder assigned by
the automatic metrics we use, such as edit distance and exactmatch accuracy. In
this sense, the results of the manual evaluation effort seenin Table 5 are not only an
evaluation of model performance, but indirectly also an assessment of the quality
of the automatic evaluation metrics. If the relative ordering resulting from the
human evaluation was different from the ordering obtained through the automatic
evaluation methods, we would have good reasons to be suspicious of the latter.
Fortunately, the outcome of the human evaluation provides us with no such reason
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for concern.
An important part of interpreting any human evaluation results is to measure the

level of inter-annotator agreement. Now, the different rank scores shown in Table 5
seem to be separated by quite solid margins, already giving us good reasons to trust
the significance of the result. However, we have also computed several independent
measures that also indicate that the level of agreement among the evaluators is
indeed quite high. For any candidate sentence given top rankby some judge for
a given item, the average number of judges who have given the same candidate
top rank is 4.5 out of 7. For the candidate realization that was ranked top by the
most judges for a given item, the average number of judges agreeing is 6.0 out
of 7. Both of these quite intuitive measures seem to indicatethat the evaluators
tend to agree quite strongly on the judgments that they make with regards to their
top-ranked sentences. However, in order to get a better impression of the inter-
annotator agreement on the overall rankings, we also computed Spearman’s rank
correlation coefficient, denoted asρ. Admittedly, having only 4 different ranking
levels is a bit too few for correlation measures to really be meaningful. However,
the coefficient still gives some impression of the level of agreements among the
judges.

Theρ coefficient is a non-parametric rank statistic for variables that are mea-
sured at the ordinal level and is equivalent to Pearson’s coefficient applied to ranks
instead of raw scores. Letdi be the difference between the ranks of each candidate
for a given test item. Spearman’s rank correlation coefficient is then computed as

ρ = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
(6)

where in our case we will haven = 4. Note that ties are handled in the same
manner as for the Wilcoxon test, i.e. by using the arithmeticaverage of the cor-
responding ranks. To use the example from above, where we hada = 1, b = 2,
c = 2, andd = 4, the normalized ranks would now bea = 1, b = 2.5, c = 2.5,
andd = 4.

Although the correlation coefficient is based on a pairwise comparison of the
judgments of two evaluators, we can easily extend this by computing, for each
judge, the average correlation towards all the other judges. Finally, note that the
correlation coefficient ranges from−1 for perfect negative correlation, through
zero for totally independent judgments, to1 for perfect positive correlation.

Table 6 shows Spearman’s rank correlation coefficient computed for all theMA

students participating in the evaluation. The first column simply enumerates the
judges. The second column shows the correspondingρ calculated as the average
pairwise correlation for all items in the evaluation set. Inthe third column the coef-
ficients are computed on the system-level. Using rank valuesthat correspond to the
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Average Rank Correlation
Judge Item Level System Level

1 0.687 1
2 0.781 1
3 0.727 1
4 0.701 1
5 0.695 1
6 0.747 1
7 0.748 1

All 0.727 1

Table 6: Average Spearman’s rank correlation coefficient for each human evaluator.

relative rank ordering seen in Table 5, we here compute the average pairwise corre-
lation coefficients with respect to overall judgments aboutthe models themselves.
The bottom row in the table shows the corresponding total averages.

The average Spearman correlation coefficient for all judgesover the entire eval-
uation set isρ = 0.73. Now, although this value would typically be taken to in-
dicate a fairly high degree of agreement (recall the boundsρ ∈ [−1, 1]), the fact
that we only have four levels of ranks involved means that we still cannot say that
this figure is statistically significant. However, we also computedρ on the system-
level. This was done by averaging all the pairwise correlations between all judges
with respect to the relative rank order of the different models. This resulted in a
correlation coefficient ofρ = 1. In other words, when looking at the system-level,
the inter-annotator agreement could not possibly be any higher, and this time the
figure is indeed statistically significant (at the0.05 level).

As seen in Table 5, the log-linear model seems to outrank theLM by a good
margin according to the human judgments. In order to more directly contrast the
differences in ranks for these two models, we also applied a statistical significance
test to their rank values in isolation. This was carried out as follows. For each
item in the questionnaire we assign a score of+1 or−1, depending on whether the
average rank given to theMaxEnt candidate is higher or lower than that given to the
LM candidate. This results in a sequence of 73 Bernoulli trials, one for each item
in the evaluation set, to which we then apply a two-tailed Sign-Test. This results in
a p-value ofp = 0.012, showing that the differences in the human rankings for the
n-gram-based language model and the log-linear treebank model are statistically
significant atα = 0.05.
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7 A Combined Model

Results for the Log-Linear Ranker w/LM feature
Development Held-Out

top 5-best top 5-best
Accuracy 74.25% 91.80% 73.98% 92.94%
WA 0.944 0.986 0.944 0.992
NEVA 0.946 0.987 0.941 0.988

Table 7: Results for the best performing log-linear model that includes theLM as a
separate feature. Tested on theLOGON generation treebanks of Table 1. The results
for the development set are obtained through ten-fold cross-validation. TheLM

feature corresponds to the model tested in Table 4, while theremaining features
are the same as in the log-linear model of Table 3. As before, the scores of the
5-best column are maximized over the 5 top-ranked candidates.

8 Summary
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White, M. (2004). Reining in CCG chart realization. InProceedings of the 3rd Interna-
tional Conference on Natural Language Generation.Hampshire, UK.

24


