
Technical Report # 2007-11

The Transfer Formalism

General-Purpose MRS Rewriting

(Draft of November 30, 2008)

Stephan Oepen

Department of Informatics

University of Oslo

Contents

1 Background — Desiderata 3

2 MRS Rewriting: The Basics 5

3 MRS Subsumption and Unification 8

4 Typing in Transfer Grammars 12

5 Transfer Ambiguity and Rule Ordering 16

6 Fine Points of the Formalism 19

7 Implementation Notes — Processing Efficiency 20

8 Developer Support 20

9 Related Work 20

10 Summary — Outlook 20

References 20

1 Background — Desiderata

Two of the core assumptions in transfer-based MT are that (i)translational equiva-
lences are expressed with reference to abstract, structured representations, and that
(ii) the source and target language structures for translationally equivalent expres-
sions need not be identical, nor in the general case even be isomorphic to each other.
With its design decision for transfer at the representational level of semantics, and
specifically the Minimal Recursion Semantics (MRS) framework, the objects ma-
nipulated in the transfer component are semantic structures (MRSs). Given an input
MRS (specific to the source language, henceforthSL), transfer constructs one or
more translationally equivalentMRSs—each, in turn, specific to the target language
(TL). Quite generally speaking, a transfer grammar thus establishes a relation be-
tween source and target language semantic structures.

A large part of transfer, actually, is mere re-labeling, replacing symbols in
the SL-specific semantics with equivalent1 TL symbols. However, as discussed
in Chapter??, such re-labeling can constitute a one-to-many relation, and it may
need to be conditioned on a specific context of use. Even when just replacing one
predicate symbol with another one—say the Norwegianutover p (a prepositional
relation) with either across p or during p in English, depending on whether the
internal argument to the preposition is of a temporal kind—it can be necessary to
attach contextual conditions on statements about transfercorrespondences.

Chapter?? already suggested examples of translational equivalencesthat in-
volve linguistic structures that differ between the sourceand target languages, in
some cases only mildly so, in others quite fundamentally. Such examples are com-
monly dubbedtranslational divergences. Besides the potential need for one-to-
many and conditional transfer, translational divergencesprovide the main moti-
vation for approaches to transfer that employ formally quite powerful machinery,
viz. realizing the transfer relation as aresource-sensitive structural rewrite system.
In the case ofLOGON, the structures manipulated by transfer areMRSs, which ab-
stractly constitute directed acyclic graphs.2 Thus, theLOGON transfer formalism

1For the remainder of this chapter, we will often use just the term equivalencewhen referring
to relations oftranslationalequivalence, i.e. the idealized relation of perfect translation. In much
the same spirit, we will use the term (transfer)correspondenceto refer to the equivalence relation
specifically at the level of transfer, i.e. as the idealized relation represented by the transfer grammar.

2At this level of abstraction,MRSs actually have much in common with feature structures, as used
for example in theLOGON parsing and generation grammars. However, it is important to remember
that there are important differences betweenMRSs and the various brands of feature structures used
in LFG or HPSGresearch. Among these are the lack of recursion (oneMRS can never embed another
MRS), the very limited use of typing, specialized notions of underspecification, and the central re-
liance on unordered bags (i.e. multi-sets), which most feature logics do not provide as a descriptive
means.

3

provides a special-purpose graph rewriting system, where individual rewrite rules
relate (parts of) a source languageMRS to the corresponding (parts of a) target lan-
guageMRS. In a manner of speaking, thus, transfer rewrites theSL MRS(into one or
moreTL MRSs) in a stepwise, piecemeal fashion—each step processing bite-sized
parts (and sometimes relatively large chunks) of structure. The rewrite system is
structural quite simply in the sense that input and output specifications alike can
exploit arbitrary structural properties of theMRS graphs. The system isresource-
sensitivein the sense that rules ‘consume’ their input, replacing it with the cor-
responding target language structure. This contrasts with, for example, standard
parsing methods for phrase structure grammar frameworks, where rules combine
constituents to form larger units but never consume their inputs, i.e. the component
parts of larger constituents remain available for combination using other rules.

Finally, theLOGON transfer formalism faciliates what is often called ‘feeding
and bleeding’ among rules. In a nutshell, there is no formal separation betweenSL

andTL MRSs, in fact for most of the transfer process the system manipulates mixed
structures:MRSsstill containing someSL parts and simultaneouslyalreadycontain-
ing someTL parts. Thus, the output of one rule will be accessible as input to other
rules; in principle the formalism makes it possible for one rule to insert material,
which another rule may then delete again, at a later point in the rewrite process.
Such ‘intermediate’ (or temporary) information makes it possible to provide con-
textual (or status) information to groups of transfer rules. As we will discuss in
considerable detail in Section 5 below, the resource-sensitive approach to transfer
entails that the ordering of transfer rules matters: after all, invocation of each rule
changes the ‘state of the universe’ (i.e. the currentMRS) visible to subsequent rule
applications. In this respect, resource-sensitive rewriting is not a purely declarative
framework (reverting the transfer relation is not straightforward and, in the general
case, may not be possible).

We will defer an in-depth argumentation for this general approach (and com-
parison to alternate views) to transfer to Section 9 below, but it is fair to say that
a majority of transfer-based MT systems make use of structural rewriting; and a
fairly large number of these, in turn, assume resource-sensitive rewriting. In terms
of formal computational complexity, rewrite systems are equivalent to the most
powerful general device of computation: theLOGON transfer component is a Turing
machine, indeed. Accordingly, transfer in this paradigm has unattractive worst case
complexity properties, but in Section 7 we argue that, nevertheless, it is possible
to provide an efficient implementation of the formalism, at least for certain classes
of transfer grammars. Unlike in grammar-based parsing and generation, there is
less established common ground in terms of (semantic) transfer formalisms and
algorithms. Therefore, this chapter has three main goals, viz. to (i) provide suf-
ficient formal and practical background for the in-depth, linguistic discussion of

4

the LOGON transfer grammars in Chapter?? and Chapter??; to (ii) serve as ref-
erence documentation for others to deploy theLOGON MRS rewriting system (be
it for transfer or other tasks); and to (iii) at least summarize the key points of the
underlying implementation, so as to allow the comparison toother such systems or
to related techniques in, say, parsing and generation. The chapter makes compara-
tively heavy use of footnotes, aiming to background the discussion of formal and
technical details, so as to not disrupt the flow of the high-level presentation of the
LOGON transfer formalism.

2 MRS Rewriting: The Basics

A transfer grammar is composed of a sequence ofMRS rewrite rules, where we
will henceforth often use the abbreviationMTR to refer to a single such rule. The
general form of oneMTR is shown somewhat schematically in (1), as a four-tuple
with componentsC (context),I (input),F (filter), andO (output).

(1) [C :] I [!F] → O

Here, the names of the four components (in italics) serve as placeholders: in actual
transfer rules, each such component is a (typically partial) description of anMRS.3

The square brackets in (1) indicate optionality of select components, while the
remaining symbols form a literal part of ourMTR notion and serve to visually seg-
regate the parts, viz. the context colon (‘:’), filter exclamation point (‘!’), and output
arrow (‘→’). Optional MTR components will often be omitted in the presentation
of example rules, unless they play a relevant role, of course.

Of the four components in transfer rules,I andO are most typical ones. For a
ruleR to be applied, theMRSdescription that constitutes theI component ofR has
to be compatible with thecurrent MRS Mi, which can be either the original input
given to transfer or the intermediate structure obtained from earlierMTR applica-
tions. Section 3 below spells out the formal details of matching MTR components
to MRSs, but abstractly we can think of this process as an instance of graph unifi-
cation: finding (all possible) ways of aligning two graph-structured objects—one
a partialMRS description (theI component ofR), the other an actual, complete
MRS (Mi). In caseI unification succeeds, we say that ruleR ‘fires’, i.e. is invoked

3Throughout this chapter we will often blur the distinction betweenMRS descriptionsand actual
MRS objects. We use the same notation for both universes, where the transfer rule components
constitute descriptions primarily in the sense that they admit a few additional descriptive devices—
similar to pattern matching operators—that are not part ofMRSs proper. The descriptions (or patterns)
used in transfer rules typically are partial specifications, aiming to match only the sub-structure in
the target (or input)MRS that is relevant to the rule in question.

5

successfully onMi. All sub-structure ofMi that was aligned with theI compo-
nent ofR is consumed, and theO specification determines what to insert in its
place. Effectively, once the application ofR is complete,O will have replacedI,
and the result is a new intermediate structureMi+1. When assemblingMi+1 as the
result of a successful rule application, theO component has access to the structural
alignments created during unification of theI description toMi. Therefore, rules
can effectively establish bindings toI sub-structures during unification and ‘carry
over’ matching parts ofMi into Mi+1, for example replacing the predicate symbol
of an elementary predication (EP) but preserving the logical variables of arguments
in that EP. For the construction ofMi+1, finally, all remaining parts ofMi—sub-
structures not aligned with any of theI description—are preserved as is, that is
copied over without changes.

Consider (2) as an example of about the most basicMTR flavor.

(2) 〈 , { h0 : bekk n(x0) }, { } 〉
→ 〈 , { h0 : creek n 1(x0) }, { } 〉

This rule is a simple replacement of the Norwegian predicatebekk n with the
English creek n 1, assuming that both correspond to plain nominal semantics (i.e.
are simple one-place relations). Our example rule (2) hasI andO components, but
noC or F conditions. See Chapter?? for more details on theMRS framework and
notation, but note that the ‘boxed’ elements here constitute a new type of variable,
viz. transfer-levelmeta-variables. Intuitively, the operation of rule (2) is really
straightforward: itsI component will look for one elementary predication with
predicate bekk n, a handle, and one argument (h0 and x0 , respectively). TheO
specification replaces the predicate but preserves the handle and argument: what-
ever the values were prior to invocation of the rule, they will remain unchanged
once the predicate symbol has been replaced. Furthermore, except for the oneEP

matched by the rule, everything else in the currentMRS will be left unchanged,
specifically the top handle, other elementary predications, and handle constraints.
In (2), we use the notation ‘’ and{ } to indicate thelack of constraints on the top
handle and bag of handle constraints, respectively.

Note thatMRS variables are typed, but the particular labels we use forMTR

meta-variables are formally unrelated to such type constraints on actual (i.e. object-
level)MRSvariables; these labels are mere identifiers, where for increased readabil-
ity transfer rules often opt for labels that suggest the intended use. Therefore, the
tag x0 can actually unify with any kind ofMRS object variable, i.e. rule (2) could
hypothetically also apply to usages ofbekk n where its argument were an event
(instead of the referential index that we typically associate with nominals). To
make the rule more specific in this particular respect, one could rewrite itsI com-
ponent ash0 h: bekk n(x0 x), thus including explicit type constraints on object

6

variables. In practice, it is an interesting methodological issue how to determine
the adequate degree of specificity in transfer rules. In our current example, theMRS

framework guarantees thatEPhandles will always be of variable typeh, so putting
an additional type constraint onh0 is superfluous.4 Likewise, albeit not formally
required, it would be a potentially troubling state of affairs if predicates associated
exclusively with nominals were to use events as their inherent argument; in this
case, the transfer grammar might decide to assume such basicwellformedness of
input MRSs and not put redundant or unnecessary constraints into the rule system.

With I andO as the core components of eachMTR, the optionalC provides a
way of conditioning a rule on specific sub-structures in the currentMRS—much like
I, but without consuming what is matched during unification oftheC component.
Conversely,F can be viewed as a negative context condition: whenever unification
of theF component succeeds, application of the particular rule will be blocked.
Just asI, bothC andF are partial descriptions ofMRSs, and structural alignments
established during unification ofC parts are accessible forO assembly—by means
of transfer meta-variables.

Example (3) demonstrates the use ofC conditions in a slightly more complex
transfer rule.

(3) 〈 , { tur n(x1) }, { } 〉 : 〈 , { h0 : gå v(e0 , x0 , x1) }, { } 〉
→ 〈 , { h0 : take v 1(e0 , x0 , x1) }, { } 〉

This rule accounts for the fact that the predicate associated to the Norwegian verb
gå (to ‘go’ or ‘walk’ in English) translates as the light verb ‘take’ in case itsARG2

argument—the one corresponding to the direct object in thiscase5—is introduced
by the predicatetur n, which would correspond to the nouns ‘walk’ or ‘trip’ in
English. Putting the constraint that determines the choiceof O predicate into the
C component effectively conditions the rule on the combined structural configura-
tion required in its left-hand side (where, again, meta-variables establish bindings
acrossMTR components). A successful application of rule (3), however, will pre-
serve the conditioningtur n EP in the currentMRS, such that it can be transferred
separately—using the same rule or rules that account for allother occurrences of
that predicate. Finally, observe that conditioning at the level of semantics makes

4In fact, the use of typing and inheritance in theLOGON specification language for transfer rules
provides an easy means of enforcing constraints of this typeglobally; see Section 4 below.

5Remember thatMRS role labels start fromARG0, where most relations associated to open-class
words useARG0 for their inherent argument, e.g. an event (e0) in the case of verbs and (predicative)
adjectives, and a referential index (x1) in the case of nominals. For increased intellectual stimula-
tion, we will at times refer to either kind of inherent argument (ARG0 values) as just theindex, thus
generalizing over the event vs. referential index distinction. We further say that a variable isintro-
ducedby a predicate when it serves as the index in an elementary predication with that predicate
symbol.

7

our rule (3) independent of syntactic (or other surface) parameters of variation,
whether the actual argument togå v were itself a compound (søndagstur, say:
‘sunday walk’ or ‘summer trip’), for example, or whether it might be positionally
separated from the verb by virtue of being topicalized.

Finally, rule (4) shows an example of multipleEPs, combined with a new handle
constraint, in the right-hand side of transfer rules, i.e. theO description.

(4) 〈 , { h0 : seter n(x0) }, { } 〉

→

〈 ,
:implicit q(x1, h1,),

h2: mountain n 1(x1{NUM sg}),
h0 : pasture n 1(x0), h0 :unspec(, x0 , x1)

{ h1 =q h2 } 〉

This rule translates (the semantics associated with) the Norwegianseteras ‘moun-
tain pasture’ in English, i.e. it presents an instance of (mild) translational diver-
gence: source language lexicalization corresponds to target language decompo-
sition—in this case as a nominal compound.

The MRS account of compounds straightforwardly rests on a vague two-place
unspec relation (as in most cases the grammar has little to say aboutthe specific
relation between the two parts) holding between the two parts of the compound,
much like an intersective modifier on the head. The semantic head in this example
is pasture n 1, and it assumes the handle and index (ARG0 value) of the soleI ele-
ment. In addition to the compound head and the vague two-place relation, the rule
further introduces the compound modifiermountain n 1—as the second argument
of theunspec relation—and adds an underspecified quantifier binding the new ref-
erential indexx1 (see Chapter?? for the rationale behind this additional quantifier).
Finally, note that theO component of rule (4) creates several new variables (h1, h2,
andx1), and (albeit in part for expository reasons) it carefully determines theMRS

variable types on each of them, and further constrainsx1 to bear singular number.

3 MRS Subsumption and Unification

To understand how exactly the left-hand side of a transfer rule is matched against
the currentMRS, we need to introduce the concepts ofMRS subsumption and unifi-
cation first. These are, in turn, closely related to various kinds of underspecification
in the MRS framework. Copestake, Flickinger, Pollard, & Sag (2005) discuss the
MRS account of scope underspecification (by means of handle constraints); con-
versely, our emphasis in the discussion of underspecification will be on other as-
pects of partiality inMRSs, which to our best knowledge have not been discussed
previously. We will inductively develop a semi-formal notion ofMRS subsumption,

8

u

i
��HH

e x

tense

tensed

�
��

H
HH

past pres fut

temp loc sp

�
�

��

H
H

HH

at p in p on p

Figure 1: Hierarchical relations among (i)MRS variable types, (ii) select variable
properties, and (iii) a small cluster of related predicate symbols.

which then serves to define the operation of unification. Intuitively, we will adapt
core concepts from general graph theory to theMRS universe: a graphG1 is said to
subsume another structureG2 if and only if a mapping can be provided from nodes
in G1 to (corresponding) nodes inG2, such that all edges among nodes ofG1 also
exist (with compatible labels) among the mapped nodes inG2.6.

The basic building blocks ofMRSs are logical variables, which optionally can
include a (flat) set of variable properties, ordered pairs ofproperty labels and val-
ues. Figure 1 shows an excerpt from the hierarchies of (i)MRS variable types,
(ii) variable properties, and (iii) predicate symbols. Such hierarchical organiza-
tion facilitates underspecification of the correspondingMRS elements. We can now
say, for example, thati subsumes bothe andx, or thate{TENSE tensed} subsumes
e{TENSE past}. Conversely, there is no subsumption between, say,e{TENSE past}
ande{TENSE pres}.

Moving on to the level of individualEPs,h0: temp loc sp(e0, e1, x0) subsumes
h0: at p(e0, e1, x0), and so does : at p(, e1,). In the latter example, we use
the transfer-level wildcard operator (‘’, an anonymous meta-variable) to indicate
uninstantiated arguments. AsMRS transfer supports ‘variable-arity’ relations (in
a technical sense), omitting such arguments (at least whereorder coding allows
it without ambiguity) would be equivalent, e.g.h0: at p(, e1), or—using explicit
role labels—h0: at p(ARG1 e1). In summary,MRS variables andEPs behave much
like (non-recursive, untyped) feature structures as regards the subsumption relation.

Examples (5) to (8) present a series of full, multi-EP MRSs. Let us ignore scopal
relations and handle constraints for the time being. By extension ofEP subsump-
tion, (5) straightforwardly subsumes (7).7

6Due to space constraints we do not elaborate on whichMRS elements should correspond to
nodes or edges in the graph analogy. In fact, multiple such views are possible, often with equivalent
properties regarding the subsumption relation; see Fuchss, Koller, Niehren, & Thater (2004) for a
candidate account.

7Remember thatEPs form an un-ordered multi-set, such that (7) could be rendered equivalently
as:〈 h0, { h0: snow n 1(x0) h0: fresh a 1(e0, x0) }, { } 〉.

9

The same holds between (6) and (7), though in a slightly more interesting con-
figuration: here, the argument in thefresh a 1 relation actually is an instantiated
variable (x0), distinct from the corresponding variable in (7). However, special-
izing variables (when establishing a mapping of nodes between sub-graphs) can
extend beyond refining variable types; we can also equate a variable with another
one (assuming the types and variable properties are compatible). This latter step
corresponds to creating a new reentrancy in the graph, againin close analogy to the
universe of feature structures.

(5) 〈 h0, { h0: fresh a 1(, x0), h0: snow n 1(x0) }, { } 〉

(6) 〈 h0, { h0: fresh a 1(e0, x0), h0: snow n 1(x1) }, { } 〉

(7) 〈 h0, { h0: fresh a 1(e0, x0), h0: snow n 1(x0) }, { } 〉

(8) 〈 h0, { h0: snow n 1(x0) }, { } 〉

It might seem intuitive to say thatMRS (8) also subsumes (7): in terms of ‘infor-
mational content’, (7) clearly contains all the information of (8), plus additional
information provided by the extraEP. When matching the left-hand side of a trans-
fer rule against the currentMRS Mi, however, this notion of partiality is already
built into the rewrite formalism. For a rule to fire, it is sufficient for it to match
part of Mi, where extraEPs inMi not aligned with any part of the rule will not be
effected by the application of the rule. Therefore, our notion of MRS subsumption
is defined more narrowly: for two structures to stand in the subsumption relation,
they need to have the same number ofEPs. While still ignoring scope underspeci-
fication, this design decision means that underspecification either applies ‘within’
one relation, or in the wayEPs are connected to each other (and the top handle).

Unfortunately, the graph containment analogy forMRS subsumption breaks
down once we take into account handle constraints; in principle, there can be
multiple distinct ways of scope underspecification in anMRS, all describing (link-
subsumingin the terminology of Copestake et al., 2005) the same set of scope-
resolved structures. This is in part because of the interactions of handle constraints
and other, implicit wellformedness conditions onMRSs, in part because the gen-
eral framework allows additional kinds of handle constraints besides the ‘equality
modulo quantifiers’ relation (‘=q ’) discussed so far. In the general case, compar-
ing twoMRSs for subsumption would require one to fully resolve scope underspec-
ification, i.e. ‘unfold’ each underspecified structure intothe corresponding set of
scope-resolvedMRSs (Copestake et al., 2005).8 In LOGON, transfer (and generation)

8The LOGON grammars, in fact, restrict themselves to only=q handle constraints. Thus, if one
were to formally disallow other kinds of handle constraints, there would be a bounded maximum
number of possible handle constraints for a given structure, and the subsumption relation would be
computable, in principle, without enumerating all scope-resolved structures.

10

operate on semantic structures that leave scope ambiguities unresolved—after all,
this is one of the main attractions ofMRS-like approaches to semantics for these
applications. We thus make a limiting assumption regardinghandle constraints,
viz. that (i) for twoMRSs to stand in the subsumption relation, they need to have an
equal number of handle constraints, and that (ii) handle constraints are restricted
to just the=q kind. Combined with additional constraints imposed by theMRS

framework—that handle constraints always relate a handle in argument position to
one labeling anEP—these assumptions mean that, for the purpose of testingMRS

subsumption in transfer, there cannot be partiality of handle constraints.9 Most
grammars with a semantics component based onMRS make use of=q constraints
in a strongly codified manner, hence in practice divergencesat this level are rare
(see Chapter?? for background).

With a notion ofMRSsubsumption at hand, we can now define theunificationof
two MRSs,M1 andM2, as the most general structureM3 that is subsumed by both
M1 andM2. Unification fails when no such structure exists. Intuitively speaking,
unification of twoMRSs preserves all information from the input structures and
does not add any new information. Reusing our earlier examples, MRSs (5) and
(6) have (7) as their unification. Conversely, (5) and (8) do not unify. By default,
matching the left-hand side of a transfer ruleRi to the currentMRS Mj computes
the joint unification of theC andI components inRi with Mj. Procedurally, this
actually is a sequence of two unifications, but conceptuallythe totality ofC andI
is treated as a single graph, such that one consistent set of bindings (mapping of
graph nodes) is established.

It follows from how we defined subsumption that eachEP in Mj must unify
against exactly oneEP in C or I, i.e. although we allow unification to equate dis-
tinct (meta-)variables,EP-level correspondences must be one-to-one (in Section 6
below, we will see other ways in whichEPs are treated as units with a somewhat
special status). Given the negative polarity of theF component, it is relevant do
say whetherF is triedbeforeor after C andI matching. Parts ofMj compatible
with F might also matchC or I, such that the rule blocking effect of aF specifi-
cation can depend on when it is evaluated. In practice,LOGON transfer grammars
make very limited use ofF conditions, and it was found most useful to test these
once all other left-hand side components of a transfer rule have been matched, i.e.
after bothC andI.

9See Chapter?? for a discussion of related concepts in generation. The original test forMRS

equivalence (i.e. mutual subsumption) in theLKB implementation actually ignored handle constraints
completely.

11

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

INPUT

2

6

6

6

6

6

6

6

4

TOP h

RELS

*

2

6

4

LBL 1

PRED bekk n

ARG0 2

3

7

5

+

HCONS list

3

7

7

7

7

7

7

7

5

OUTPUT

2

6

6

6

6

6

6

6

4

TOP h

RELS

*

2

6

4

LBL 1

PRED creek n 1

ARG0 2

3

7

5

+

HCONS list

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 2: Feature structure representation of a simple transfer rule.

4 Typing in Transfer Grammars

Our firstMTR example (2) above may seem a surprisingly complex statement, see-
ing that it records the simple fact that the Norwegian nounbekktranslates as ‘creek’
in English. First, recall that transfer inLOGON operates at the level of semantics;
in this and other chapters, we will typically discuss relations of translational cor-
respondence in terms of semantic predicates (and their arguments), rather than in
terms of words.10 Second, and more importantly, there are large numbers of trans-
fer correspondences like the one exemplified in (2), each replacing the predicate
symbol while preserving the handle and inherent argument ofone elementary pred-
ication. For descriptive adequacy (and convenience), it isdesirable to separate the
information about the generalpattern of correspondencefrom theactual instances
of that pattern.

For the purpose of statinggeneralizationsover transfer rules, theLOGON ap-
proach builds on the successful experience in the Head-Driven Phrase Structure
Grammar (HPSG) framework, and specifically the methodology that has enabled
the creation of largeHPSGimplementations like theERG (see Chapter?? for back-
ground). Abstractly similar to common techniques in object-oriented software de-

10The vast majority of predicates in the semantics, of course,are associated to lexical units (words
or multi-word expressions), and the few predicates associated to grammatical processes (e.g. deriva-
tion or causativization) and constructions (e.g. compounding or coordination) tend to contribute more
abstract relations. However, many syntactic distinctionsare either bleached at the level of seman-
tics or only reflected indirectly. Adjectives and adverbs—‘quick’ and ‘quickly’, for example—and
distinct verb frames related by diathesis alternations or optionality of complements often share a
common semantic predicate. As pointed out in Chapter??already, we compose open-class predicate
names with suffixes liken or v, but this is merely a notational convention to obtain a consistent
top-level sense division.

12

velopment, our main tool in developing transfer grammars isthe use of (typed)
feature structures (TFSs) and multiple inheritance. Chapter?? introduced the cor-
respondence between theTFS andMRS universes. In a nutshell, Figure 2 presents
an alternate way of encoding the information of our first transfer rule (example (2)
above).11

We will discuss theTFSto MRSmapping in more detail shortly, but note how the
top-level features correspond to the individual components of MTRs (in this case,
I andO). Comparing rule (2) and the feature structure of Figure 2—at least if
judging by the amount of ink on the page—we have hardly increased the readability
of our example. The correspondence to theTFS universe, however, is relevant in
that it allows us to ‘piggyback’ on the general logic of typedfeature structures,
whose mathematical and computational properties are thoroughly studied (Rounds
& Kasper, 1986; Carpenter, 1992; inter alios).

Much in the way grammars like theERG organize linguistic knowledge, we
can thus state the generalization over transfer rules like (2)—replacing the predi-
cate in plain one-place relations—as an abstract type. For the present example, a
type noun mtr12 can be defined to correspond to the full feature structure of Fig-
ure 2, with the exception of the specificPRED values, i.e. the predicate symbols
proper. Assuming this type, we can reduce the actual transfer rule to a statement
like (9), where the conjunction operator (‘∧’) simply means to combine (i.e. in-
herit) all constraints from the supertypenoun mtr with the additional, ‘local’TFS

specification.

(9) noun mtr∧
2

6

6

6

4

INPUT|RELS

fi

h

PRED bekk n
i

fl

OUTPUT|RELS

fi

h

PRED creek n 1
i

fl

3

7

7

7

5

Example (9) is relatively close to how transfer rules are actually encoded in the
LOGON transfer grammars. Going back to the slightly more complex example (4)
above, (10) shows the actual source code of this rule—presupposing the existence
of an abstract correspondence typen n+n mtr for one (lexicalized) nominal rela-

11Although we make central use of types in setting up hierarchical (i.e. inheritance) relations
among relevant semantic configurations and parts of transfer rules, the actual types at the leaf of the
hierarchy have no important bearing on the correspondence to MRS elements. Hence we will at times
suppress type information (or features with irrelevant values) in the presentation of feature structure
examples.

12The suffix mtr (short for ‘MRS transfer rule’) inLOGON transfer grammars indicates the yield of
the type hierarchy, i.e. those correspondence types expected to be instantiated by actual transfer rules.
Note that the information comprised in the typenoun mtr may of course be further decomposed by
means of additional, more general, supertypes or even the use of multiple inheritance.

13

tion translating as a nominal compound. Note that theTFS descriptions ofMRSs
encode the (logically) unordered multi-sets of elementarypredications and handle
constraints (RELS andHCONS in theTFS universe) as ordered lists, which makes it
possible to ‘overlay’ information on specific elements by positional references.13

(10) seter_mountain+pasture_n := n_n+n_mtr &
[INPUT.RELS < [PRED "_seter_n_rel"] >,

OUTPUT.RELS < [PRED "_mountain_n_1_rel"],
[PRED "_pasture_n_1_rel"], ... >].

TheLOGON transfer component is built as an extension of the Linguistic Knowledge
Builder (LKB ; Copestake, 2002; see Chapter?? for background). Accordingly, the
specific syntax of (9) is that of the Type Definition Language (TDL; Krieger &
Schäfer, 1994), but by comparison to examples (9) and (2) above it should be rea-
sonably clear how to interpret this definition.14 Comparing (10) to (4) now, it is
easier to see how the use of typed feature structures can simplify the specification
of transfer rules. Although there are relevant formal differences15, type definitions
andTFS inheritance play a role (abstractly) similar to a macro or template facility.
Our correspondence types capture general transfer regularities—direct correspon-
dences and translational divergences alike—and for each such type there can be a
potentially large number of specific instances, i.e. actualMTRs with token predicate
symbols. Chapter??discusses our Norwegian – English transfer grammar in depth,
but note that theLOGON project arrived at about400 abstract correspondence types,
with a little over14, 000 transfer rule instances. Furthermore, the type hierarchy
makes it easy to enforce global wellformedness conditions,for example limiting
the range of admissible (object-level) variable types (e.g. h, e, andx) and abstrac-
tions (i, p, andu, say); enforcing that all relations have a handle (of typeh) and
predicate (an atomic type, defined in the hierarchy); or thatthe quantifier-specific

13In analogy to a common technique inHPSG, the feature structure formalism would allow the
introduction of position-independent references to select elements of theRELS andHCONS lists, say
additional featuresHEAD andMODIFIER for the two externally relevantEPs in our compound exam-
ple. However, currentLOGON transfer grammars have opted for the simpler order coding ofsuch
references, so far with no noticeable loss of generality.

14The ‘&’ here is theTDL conjunction operator, and ‘:=’ merely is the syntax for definitions;
setermountain+pasturen is the identifier (or name) of this rule and is mainly relevantfor debugging
purposes.

15The comparison betweenTFSsystems and the formalism assumed in Lexical Functional Gram-
mar (LFG; see Chapter??) is an interesting one, and theHPSGandLFG communities continue to hold
mutually incompatible beliefs on the formal differences between the two (somewhat like the com-
munities of C++ and Lisp software developers, a cynic might say).LFG assumes untyped structures
and instead ofTFS inheritance makes heavy use of abbreviatory, parameterized macros. Macros can
be recursively defined in terms of other macros, even multiply so, thus achieving effects similar to
multiple inheritance.

14

role labelsRSTR andBODY (both with value typeh) can only occur in conjunction
with the inherent argument labelARG0 (typed tox in the case of quantifiers).

Summing up our discussion of theTFS to MRS correspondence so far, we em-
ploy typed feature structures asdescriptionsof transfer rules, which in turn really
are four-tuples of descriptions ofMRSs. TDL is our description language for typed
feature structures, and theTFS logic (including its rules of multiple inheritance and
TFSwellformedness) implemented in theLKB the primary means of generalization
over groups ofMTRs. The mapping from a typed feature structure to anMRS is
fairly straightforward and discussed in some detail by Copestake et al. (2005) and
Chapter??. TheLOGON transfer formalism extends this correspondence to transfer
rules and their added descriptive devices (particularly meta-variables). Assume a
completeTFS like the most basic one of Figure 2, i.e. the structure combining in-
formation inherited from supertypes with the rule-specific, local specification. The
top-level structure has featuresINPUT, OUTPUT (and optionallyCONTEXT and FIL-

TER). Each sub-structure below these features corresponds to oneMRS description,
with the added constraint that re-entrancies at certain levels are interpreted as trans-
fer meta-variables (just like, ordinarily,TFS re-entrancies are interpreted as logical
variables within oneMRS). Possible positions for meta-variables correspond to the
basic units ofMRS contents discussed in Section 3 above: For eachEP, these are (i)
the handle, (ii) the predicate, and (iii) any of the arguments (values of role labels).16

Where theTFScontains additional information on these re-entrant nodes, the stan-
dardTFS to MRS mapping rules apply. Such information could comprise a specific
MRS variable typee, say, or constraints on variable properties like{TENSE past}.17

Finally, it is important to observe that theTFS to transfer rule conversion is
a compile-timeoperation. Once constructed from theirTFS descriptions,MTRs
take the form sketched in Section 2 above, viz. as four-tuples of partialMRS de-
scriptions. Accordingly,MTR processing relies centrally on the notions ofMRS

subsumption and unification defined in Section 3, independent of theTFS type hi-
erarchy.18

16Although it should in principle, the current implementation doesnot support transfer meta-
variables for variable properties, i.e. there is no direct way of creating anewobject-level variable
in theO component of a transfer rule and let that variable take select variable properties from left-
hand side matches of the rule. In practice, we have rarely found such computation necessary, but
currentLOGON transfer grammars occasionally simulate the intended effect through a combination
of transfer-internalEPs and output overwriting; see Section 6 below.

17At the implementation level, meta-variables actually use the same internal structure asMRS

object-level variables.
18The LOGON transfer component to date makes one exception to the separation of theTFS and

MRS universes: the hierarchical relations amongMRS variable types, values of variable properties,
and predicate symbols are represented as part of the standard LKB type hierarchy (note that these
types, in all three cases, are atomic, i.e. cannot have internal structure). In principle, however, a good

15

5 Transfer Ambiguity and Rule Ordering

So far in this chapter we have hardly talked about transfer-level ambiguities or (the
closely related topic of) the order of processing in the rewrite system. We defined
a transfer grammar as asequenceof MTRs, in other words there is a linear order-
ing to the rules. The order of transfer rules inLOGON is determined simply by the
arrangement ofMTR descriptions in the source files comprising the transfer gram-
mar. Thus, the transfer grammarian has complete control (and responsibility) over
the sequencing of rules; see Section 9 below for alternate approaches to rule order-
ing. Assume a transfer grammar containingn rules〈R1, . . . , Rn〉; R1 will be the
first rule to be tried, followed byR2, and so on. The rewrite process makes a single
pass through theMTR sequence—never going back to earlier rules—and terminates
whenRn has been processed. Whenever a ruleRi fires, the currentMRS Mj is re-
placed byMj+1, reflecting the effects of invokingRi; subsequent rule application
takesMj+1 as its input. Each rule can in principle apply more than once:the orig-
inal input MRS may contain multiple occurrences of some piece of semantics, for
example the relation associated to a preposition that occurred twice in the original
source language utterance. Therefore, afterRi has fired, the rewrite process will
try Ri again (onMj+1 this time), and rewriting will only advance to ruleRi+1 once
the left-hand side condition ofRi (i.e. the totality of itsC, I, andF components)
is no longer compatible with the currentMRS. This has two logical consequences:
(i) rules generating output compatible with their own inputrequirements can create
infinite rewrite cycles; and (ii) for a ruleRi whose input condition occurs multiple
times in the currentMRS, there can be multiple distinct ‘chains’ of applications of
Ri. For this latter scenario, the rewrite process will exploreall such sequences in
a pseudo-parallel search; where distinct chains of invoking the same rule multiple
times arrive at equivalent results, these would present spurious ambiguities and are
thus ‘packed’ back into a single structure.19 This property of the rewrite process is
discussed further in Section 7 below.

It is of course quite common for an elementary predication ora ‘chunk’ of
connected semantic structure to have more than one possibletranslational equiva-
lence. Instantiating our basicnoun mtr correspondence type once again, examples
(11) and (12) show a pair of related transfer rules: both takethe nominal relation

part of this specification should be globally hard-wired (bytheMRS formalism), and another part be
imported from the Semantic Interfaces (SEM-Is; see Chapter??) for the source and target language
grammars.

19For our example of multiple equivalent prepositional relations (call themP1 andP2), it would
likely not matter in which order theEPs are rewritten, i.e. whether the first application ofRi consumed
P1 or P2. However,Ri could in principle be sensitive to bothP1 andP2, for example as part of itsC
or F components; for formal correctness, the rewrite process therefore needs to pursueall possible
permutations ofRi chains.

16

associated with Norwegianhageas their inputs, where (11) translates it as English
‘garden’ and (12) as ‘orchard’. This pair of rules demonstrates a frequent phe-
nomenon: the target language makes a lexicalized distinction that is not made (in
the same way) in the source language.

(11) noun mtr∧ 〈 , { hage n }, { } 〉 ?→ 〈 , { garden n 1 }, { } 〉

(12) noun mtr∧ 〈 , { hage n }, { } 〉 → 〈 , { orchard n 1 }, { } 〉

One-to-many transfer-level correspondences like this must give rise to transfer am-
biguity, i.e. whenever a source languageMRS contains the predicatehage n, trans-
fer should yield (at least) two outputMRSs. To allow such indeterminacy in transfer,
we need to augment our formalism. Without extra provision, assuming the rules
were ordered like (11) and (12) above, the first rule will fire on all occurrences of
hage n and always consume its input specification, thus making it impossible for

rule (12) to ever be invoked.
TheLOGON transfer formalism supports ambiguity of this kind by virtue ofop-

tional rewrite rules, indicated in (11) through the new ‘?→’ operator. When rewrit-
ing comes to firing an optional ruleR?

i (like (11) above) on the currentMRS Mj,
the rewrite process forks into two parallel branches: one branch appliesR?

i in the
standard way and proceeds to tryingR?

i on Mj+1; the other branch skips overR?
i

and advances to tryingRi+1 onMj.20 Each such fork in the rewrite process creates
the potential for multiple transfer outputs, where ambiguities that are independent
of each other can multiply across branches. Although it is not formally required, it
makes sense to mark the last rule in a group ofMTRs with identical (or overlapping)
input requirements asobligatory. This ensures that the source language elements
in question are consumed eventually, i.e. it avoids creating transfer branches with
‘left-over’ SL material.

Groups of relatedMTRs need not exhibit such perfect parallelism as in exam-
ples (11) and (12). TheERG analyzes (the literal sense of) ‘go’ as intransitive, i.e.
go v 1 is a one-place relation, whilewalk v 1 constitutes a two-place relation.

But the Norwegiangå can be used either intransitively or transitively, and transfer
needs to make sure to properly match up arguments across translational correspon-
dences. Rules (13) and (14) below differ in their input requirements: (13) uses the
special object-level variable typea (an ‘anti-variable’) to prevent unification with
a relation that actually has an instantiated second argument. As English ‘walk’
also has an intransitive use, rule (13) is marked as optional, but there will only be
transfer indeterminacy when the inputgå v occurs as a one-place relation.21

20In case there were multiple ways of invokingR?
i on Mj (in the spirit of our earlier exam-

ple involving multiple occurrences of the same preposition), there will be as many parallel rewrite
branches, in addition to the one branch skipping over the rule.

21Section 6 below presents another way of achieving the same effect, viz. by changing the con-

17

(13) 〈 , { h1 : gå v(e0 , p0 , a) }, { } 〉
?→ 〈 , { h1 : go v 1(e0 , p0) }, { } 〉

(14) 〈 , { h1 : gå v(e0 , p0 , x0) }, { } 〉
→ 〈 , { h1 : walk v 1(e0 , p0 , x0) }, { } 〉

In a similar spirit, the pair of rules (15) and (16) have identical I specifications
(though only one of them has aC component), but they differ substantially in their
outputs. The Norwegianbegeistreconveys variable degrees of effect, which these
transfer rules capture as either English ‘inspire’ or ‘fill with enthusiasm’. The latter
is analyzed as a two-place relation with an additional predicative set ofEPs, parallel
to aPPmodifier on its second argument.22

(15) 〈 , { h1 : begeistre v(e0 , p0 , x1) }, { } 〉
→ 〈 , { h1 : inspire v 1(e0 , p0 , x1) }, { } 〉

(16) 〈 , { h0 : (x1) }, { } 〉 :
〈 , { h1 : begeistre v(e0 , p0 , x1) }, { } 〉

?→

〈 ,
h1 : fill v cause(e0 , p0 , x1),
h0 : with p(, x1 , x2), :udef q(x2 , h2 h,),
h3 :enthusiasm n 1(x2 x{NUM sg})

{ h2 =q h3 h } 〉

To summarize our discussion of rule ordering and ambiguity,it should by now
be clear that the correct sequencing ofMTRs is of central importance. TheLO-

GON transfer formalism shares this property with other resource-sensitive rewrite
systems, and our approach is to let the transfer grammar(ian) take complete con-
trol over the order of rules. As exemplified by multiple pairsof examples, among
groups ofMTRs with overlapping input requirements, optional rules mustprecede
non-optional ones. Furthermore, rules with more specific left-hand sides should
typically precede more general rules and specifically ones targeting the individual
parts of a complex input specification. Going back to our earlier example (3), for

straints on input matching to subsumption (rather than unification) for part of the rule left-hand side.
22Chapter?? discusses theMRS analysis of intersective modification (on thex1 argument in this

case, not the event of the relation as a whole): intersectivemodifiers generally take the index of
their modifee as the first argument (ARG1) and identify its handle with their own handle (the latter
corresponding to logical conjunction inMRS). Rule (16) makes use of itsC component to gain access
to the correct handle (h0), i.e. the underspecified context condition is there to ‘grab’ another variable
from the currentMRS rather than to constrain applicability of the rule. No matter its predicate symbol,
theC element will need to unify with the relation introducing index x1

18

the context condition on the cognate objecttur n to be effective, rule (3) must
be ordered prior to any rule that could consume the conditioning predicate tur n.
LOGON transfer grammars approach the problem of rule sequencing by means of
breaking the transfer process into multiple phases, each corresponding to distinct
classes of rules. Complex rules like (3), for example, are ordered before purely
‘lexical’ ones, but after a set of rules that transfer (and toa certain degree harmo-
nize) abstract, structural relations. Note that, except for (3), all examples so far can
be viewed as lexical, in that their left-hand sides only makereference to a single
specific source language predicate.

6 Fine Points of the Formalism

The preceding sections gave a semi-formal description of the core of theMRS

rewrite facilities. The formalism presented this far accurately reflects the origi-
nal design of theLOGON transfer facilities; however, over the course of about three
years—developing transfer grammars of increasing complexity (and other applica-
tions ofMRS rewriting)—several extensions and one revision were made,most of
them to address specialized needs that we did not foresee initially. The following
paragraph provide a quick overview of the most important such add-ons.

Skolemization

Subsumption vs. Unification

Bulk Copying

Output Overwriting

Regular Expressions

Variable Property Mapping

19

7 Implementation Notes — Processing Efficiency

8 Developer Support

9 Related Work

10 Summary — Outlook

References

Carpenter, B. (1992).The logic of typed feature structures.Cambridge, UK: Cambridge
University Press.

Copestake, A. (2002).Implementing typed feature structure grammars.Stanford, CA:
CSLI Publications.

Copestake, A., Flickinger, D., Pollard, C., & Sag, I. A. (2005). Minimal Recursion Se-
mantics. An introduction.Journal of Research on Language and Computation, 3(4),
281 – 332.

Fuchss, R., Koller, A., Niehren, J., & Thater, S. (2004). Minimal Recursion Semantics
as dominance constraints. Translation, evaluation, and analysis. InProceedings of the
42nd Meeting of the Association for Computational Linguistics. Barcelona, Spain.

Krieger, H.-U., & Schäfer, U. (1994).TDL — A type description language for constraint-
based grammars. InProceedings of the 15th International Conference on Computa-
tional Linguistics(pp. 893 – 899). Kyoto, Japan.

Rounds, W. C., & Kasper, R. T. (1986). A complete logical calculus for record struc-
tures representing linguistic information. InProceedings of the 15th Annual IEEE
Symposium on Logic in Computer Science.Cambridge, MA.

20

