L GON

Technical Report # 2007-11

The Transfer Formalism
General-Purpose MRS Rewriting

(Draft of November 30, 2008)

Stephan Oepen

Department of Informatics

University of Oslo

Contents

8

9

Background — Desiderata

MRS Rewriting: The Basics

MRS Subsumption and Unification

Typing in Transfer Grammars

Transfer Ambiguity and Rule Ordering

Fine Points of the Formalism

Implementation Notes — Processing Efficiency
Developer Support

Related Work

10 Summary — Outlook

References

12

16

19

20

20

20

20

20

1 Background — Desiderata

Two of the core assumptions in transfer-based MT are thaifislational equiva-
lences are expressed with reference to abstract, strdatepeesentations, and that
(i) the source and target language structures for transkty equivalent expres-
sions need not be identical, nor in the general case eventm@iphic to each other.
With its design decision for transfer at the representatitevel of semantics, and
specifically the Minimal Recursion Semantiesrs) framework, the objects ma-
nipulated in the transfer component are semantic strusness). Given an input
MRS (specific to the source language, hencefatl, transfer constructs one or
more translationally equivalemrss—each, in turn, specific to the target language
(TL). Quite generally speaking, a transfer grammar thus esheds a relation be-
tween source and target language semantic structures.

A large part of transfer, actually, is mere re-labeling, laejng symbols in
the sL-specific semantics with equivaléntL symbols. However, as discussed
in Chapter??, such re-labeling can constitute a one-to-many relatiod, iamay
need to be conditioned on a specific context of use. Even wigtmgplacing one
predicate symbol with another one—say the Norwegiaover_p (a prepositional
relation) with either.across_p or _during_p in English, depending on whether the
internal argument to the preposition is of a temporal kintlean be necessary to
attach contextual conditions on statements about transfeespondences.

Chapter?? already suggested examples of translational equivalahegsn-
volve linguistic structures that differ between the sowsiod target languages, in
some cases only mildly so, in others quite fundamentallghSaxamples are com-
monly dubbedtranslational divergencesBesides the potential need for one-to-
many and conditional transfer, translational divergenueside the main moti-
vation for approaches to transfer that employ formally ggibwerful machinery,
viz. realizing the transfer relation agesource-sensitive structural rewrite system
In the case ofocoN, the structures manipulated by transfer mress, which ab-
stractly constitute directed acyclic graphsThus, theLocon transfer formalism

For the remainder of this chapter, we will often use just #mntequivalencevhen referring
to relations oftranslational equivalence, i.e. the idealized relation of perfect tratish. In much
the same spirit, we will use the term (transfeorrespondencéo refer to the equivalence relation
specifically at the level of transfer, i.e. as the idealizgldtion represented by the transfer grammar.

2At this level of abstractionyirRss actually have much in common with feature structures, ed us
for example in the.oGoN parsing and generation grammars. However, it is impor@aneinember
that there are important differences betwegss and the various brands of feature structures used
in LFG or HPSGresearch. Among these are the lack of recursion (@R&can never embed another
MRS), the very limited use of typing, specialized notions of ergecification, and the central re-
liance on unordered bags (i.e. multi-sets), which mosufedbgics do not provide as a descriptive
means.

provides a special-purpose graph rewriting system, whnetgidual rewrite rules
relate (parts of) a source languagrs to the corresponding (parts of a) target lan-
guagemRs. In a manner of speaking, thus, transfer rewritessth®rs (into one or
moreTL MRSS) in a stepwise, piecemeal fashion—each step procesdmgibed
parts (and sometimes relatively large chunks) of structiitee rewrite system is
structural quite simply in the sense that input and output specificatalike can
exploit arbitrary structural properties of tiwrs graphs. The system igsource-
sensitivein the sense that rules ‘consume’ their input, replacingiihwhe cor-
responding target language structure. This contrasts fathexample, standard
parsing methods for phrase structure grammar frameworksrevules combine
constituents to form larger units but never consume theiuts i.e. the component
parts of larger constituents remain available for comlodmatising other rules.

Finally, theLoGoN transfer formalism faciliates what is often called ‘feaglin
and bleeding’ among rules. In a nutshell, there is no forrapasation betweesL
andTL MRSs, in fact for most of the transfer process the system maatigsiimixed
structuresMRssstill containing someL parts and simultaneousajreadycontain-
ing someTL parts. Thus, the output of one rule will be accessible astitgpather
rules; in principle the formalism makes it possible for ookerto insert material,
which another rule may then delete again, at a later pointhenréwrite process.
Such ‘intermediate’ (or temporary) information makes isgible to provide con-
textual (or status) information to groups of transfer ruléds we will discuss in
considerable detail in Section 5 below, the resource-semsipproach to transfer
entails that the ordering of transfer rules matters: afileireocation of each rule
changes the ‘state of the universe’ (i.e. the curne®s) visible to subsequent rule
applications. In this respect, resource-sensitive rawgis not a purely declarative
framework (reverting the transfer relation is not strdigiward and, in the general
case, may not be possible).

We will defer an in-depth argumentation for this generalrapph (and com-
parison to alternate views) to transfer to Section 9 belaw,itds fair to say that
a majority of transfer-based MT systems make use of stralkctewriting; and a
fairly large number of these, in turn, assume resourceitsensewriting. In terms
of formal computational complexity, rewrite systems areiegent to the most
powerful general device of computation: thesoN transfer component is a Turing
machine, indeed. Accordingly, transfer in this paradigm inaattractive worst case
complexity properties, but in Section 7 we argue that, ribedess, it is possible
to provide an efficient implementation of the formalism,estdt for certain classes
of transfer grammars. Unlike in grammar-based parsing @amemgtion, there is
less established common ground in terms of (semantic)feaf@malisms and
algorithms. Therefore, this chapter has three main goastw (i) provide suf-
ficient formal and practical background for the in-depthgliistic discussion of

4

the LOGON transfer grammars in Chapt@® and Chaptef?; to (ii) serve as ref-
erence documentation for others to deploy theon MRS rewriting system (be
it for transfer or other tasks); and to (iii) at least sumrpaithe key points of the
underlying implementation, so as to allow the comparisanther such systems or
to related techniques in, say, parsing and generation. fifygter makes compara-
tively heavy use of footnotes, aiming to background theuwdismn of formal and
technical details, so as to not disrupt the flow of the higkell@resentation of the
LOGON transfer formalism.

2 MRS Rewriting: The Basics

A transfer grammar is composed of a sequenceirs rewrite rules, where we
will henceforth often use the abbreviatiofTr to refer to a single such rule. The
general form of one/TR is shown somewhat schematically in (1), as a four-tuple
with componentg (context),Z (input), F (filter), andO (output).

Q) [C]I[F]—0O

Here, the names of the four components (in italics) servésaepolders: in actual
transfer rules, each such component is a (typically padscription of ammMrs.®

The square brackets in (1) indicate optionality of selecbjgonents, while the
remaining symbols form a literal part of oMTR notion and serve to visually seg-
regate the parts, viz. the context colon)(filter exclamation point ("), and output
arrow (‘—"). Optional MTR components will often be omitted in the presentation
of example rules, unless they play a relevant role, of course

Of the four components in transfer rul&€&sand© are most typical ones. For a
rule R to be applied, theirRs description that constitutes t@ecomponent of? has
to be compatible with theurrent MRS M;, which can be either the original input
given to transfer or the intermediate structure obtainethfearlierMTR applica-
tions. Section 3 below spells out the formal details of miawgivyTR components
to MRss, but abstractly we can think of this process as an instahgeaph unifi-
cation: finding (all possible) ways of aligning two graphdstured objects—one
a partialMRs description (theZ component ofR), the other an actual, complete
MRS (M;). In caseZ unification succeeds, we say that ritefires’, i.e. is invoked

3Throughout this chapter we will often blur the distinctioetlveenmRrs descriptionsand actual
MRS objects We use the same notation for both universes, where theférande components
constitute descriptions primarily in the sense that theyiad few additional descriptive devices—
similar to pattern matching operators—that are not pavtress proper. The descriptions (or patterns)
used in transfer rules typically are partial specificatjaiming to match only the sub-structure in
the target (or inputMRs that is relevant to the rule in question.

successfully onZ;. All sub-structure ofM; that was aligned with th& compo-
nent of R is consumed, and th@ specification determines what to insert in its
place. Effectively, once the application Bfis complete O will have replaced’,
and the result is a new intermediate structiifg 1. When assembling/; ., as the
result of a successful rule application, tReeomponent has access to the structural
alignments created during unification of thedescription tal/;. Therefore, rules
can effectively establish bindings fosub-structures during unification and ‘carry
over’ matching parts oM; into M, 1, for example replacing the predicate symbol
of an elementary predicatiog®) but preserving the logical variables of arguments
in thatEP. For the construction oM, 1, finally, all remaining parts of\/;—sub-
structures not aligned with any of tlie description—are preserved as is, that is
copied over without changes.

Consider (2) as an example of about the most bask flavor.

@) (_ {[ho}-bekk-n(Xq) }, { })
— (., {[hocreekn1(a) }, { })

This rule is a simple replacement of the Norwegian predich#&k_n with the
English_creek_n_1, assuming that both correspond to plain nominal semantes (
are simple one-place relations). Our example rule (2)hasd© components, but
noC or F conditions. See Chaptéf? for more details on th&Rs framework and
notation, but note that the ‘boxed’ elements here constiutew type of variable,
viz. transfer-levelmeta-variables Intuitively, the operation of rule (2) is really
straightforward: itsZ component will look for one elementary predication with
predicate bekk_n, a handle, and one argumelfip{ and[Xg], respectively). The&)
specification replaces the predicate but preserves thdehand argument: what-
ever the values were prior to invocation of the rule, theyt véimain unchanged
once the predicate symbol has been replaced. Furthermareptefor the onep
matched by the rule, everything else in the curmart will be left unchanged,
specifically the top handle, other elementary predicatiangl handle constraints.
In (2), we use the notation_* and { } to indicate thdack of constraints on the top
handle and bag of handle constraints, respectively.

Note thatMRS variables are typed, but the particular labels we usevitr
meta-variables are formally unrelated to such type coimtgran actual (i.e. object-
level) MRS variables; these labels are mere identifiers, where foeasesd readabil-
ity transfer rules often opt for labels that suggest thenidésl use. Therefore, the
tag[Xp] can actually unify with any kind ofiRS object variable, i.e. rule (2) could
hypothetically also apply to usages dkkk_n where its argument were an event
(instead of the referential index that we typically assciith nominals). To
make the rule more specific in this particular respect, omnddo@write itsZ com-
ponent ashglh:_bekk_n(Xglx), thus including explicit type constraints on object

6

variables. In practice, it is an interesting methodologisaue how to determine
the adequate degree of specificity in transfer rules. In oeat example, theIRs
framework guarantees thar handles will always be of variable tyje so putting
an additional type constraint dm] is superfluou$. Likewise, albeit not formally
required, it would be a potentially troubling state of afaf predicates associated
exclusively with nominals were to use events as their infiteaggument; in this
case, the transfer grammar might decide to assume suchvealficormedness of
input MRss and not put redundant or unnecessary constraints intagystem.

With Z and O as the core components of eaghr, the optionalC provides a
way of conditioning a rule on specific sub-structures in tneentMrRs—much like
Z, but without consuming what is matched during unificationh&fC component.
Conversely,F can be viewed as a negative context condition: whenevecatidn
of the 7 component succeeds, application of the particular rulé lveilblocked.
Just a<Z, bothC andF are partial descriptions ofRSs, and structural alignments
established during unification Gfparts are accessible f@ assembly—by means
of transfer meta-variables.

Example (3) demonstrates the useCatonditions in a slightly more complex
transfer rule.

@) (. {turn@ED} {}): (- {[hol-gdv(Ea Xo} k1) . { })
— (., {[ho:-take_v-1(q], [Xal. X1 }, { })

This rule accounts for the fact that the predicate assattat¢he Norwegian verb
ga (to ‘go’ or ‘walk’ in English) translates as the light vertake’ in case it\RG2
argument—the one corresponding to the direct object indhé®—is introduced
by the predicatetur_n, which would correspond to the nouns ‘walk’ or ‘trip’ in
English. Putting the constraint that determines the chofa@ predicate into the
C component effectively conditions the rule on the combirtegcsural configura-
tion required in its left-hand side (where, again, metdaaldes establish bindings
acrossvMTR components). A successful application of rule (3), howewdr pre-
serve the conditioningur_n EPin the currentMRS, such that it can be transferred
separately—using the same rule or rules that account fatledlr occurrences of
that predicate. Finally, observe that conditioning at el of semantics makes

“In fact, the use of typing and inheritance in tl@son specification language for transfer rules
provides an easy means of enforcing constraints of thisdjqeally; see Section 4 below.

SRemember thairs role labels start frorarco, where most relations associated to open-class
words usearco for their inherent argument, e.g. an evdaglj in the case of verbs and (predicative)
adjectives, and a referential indéxy() in the case of nominals. For increased intellectual s@mul
tion, we will at times refer to either kind of inherent argumhérGo values) as just thndex thus
generalizing over the event vs. referential index distomct We further say that a variable iistro-
ducedby a predicate when it serves as the index in an elementadjcate®n with that predicate
symbol.

our rule (3) independent of syntactic (or other surfacepeaters of variation,
whether the actual argument tga_v were itself a compoundsgndagstur say:
‘sunday walk’ or ‘summer trip’), for example, or whether iight be positionally
separated from the verb by virtue of being topicalized.

Finally, rule (4) shows an example of multigtes, combined with a new handle
constraint, in the right-hand side of transfer rules, he.® description.

@) (. {[hol-setern(xa) }, {})

__implicit.q(x1, hy,),
— | hg:_mountain_n_1(x1{NUM sg}),
[hol:_pasture_n_1(Xq]), [hol:unspec(_, [Xql, X1)
{hi=gh2})

This rule translates (the semantics associated with) trevélpanseteras ‘moun-
tain pasture’ in English, i.e. it presents an instance ofd)rtranslational diver-
gence: source language lexicalization corresponds tettd@gguage decompo-
sition—in this case as a nominal compound.

The MRS account of compounds straightforwardly rests on a vagueptace
unspec relation (as in most cases the grammar has little to say ahewpecific
relation between the two parts) holding between the twospafrthe compound,
much like an intersective modifier on the head. The semaeptd In this example
is _pasture_n_1, and it assumes the handle and indexdp value) of the sol€ ele-
ment. In addition to the compound head and the vague twepkdation, the rule
further introduces the compound modifierountain_n_1—as the second argument
of theunspec relation—and adds an underspecified quantifier binding ¢eref-
erential index; (see Chapte??for the rationale behind this additional quantifier).
Finally, note that th& component of rule (4) creates several new varialiigesh,
andx), and (albeit in part for expository reasons) it carefulgtermines th&rs
variable types on each of them, and further constrain® bear singular number.

3 MRS Subsumption and Unification

To understand how exactly the left-hand side of a transflerisumatched against
the curreniRS, we need to introduce the conceptavsts subsumption and unifi-
cation first. These are, in turn, closely related to varidnd«of underspecification

in the MRS framework. Copestake, Flickinger, Pollard, & Sag (2005cdss the
MRS account of scope underspecification (by means of handlgraimts); con-
versely, our emphasis in the discussion of underspeciitatill be on other as-
pects of partiality inMRss, which to our best knowledge have not been discussed
previously. We will inductively develop a semi-formal rami of MRS subsumption,

8

u tense

| | temp_loc_sp

i tensed /'\
Y T atp _np _onp
e X past pres fut e T T

Figure 1. Hierarchical relations among {iRs variable types, (ii) select variable
properties, and (iii) a small cluster of related predicatmisols.

which then serves to define the operation of unification. itirfly, we will adapt
core concepts from general graph theory toMiRs universe: a graplyr; is said to
subsume another structué if and only if a mapping can be provided from nodes
in GG; to (corresponding) nodes s, such that all edges among nodesxgfalso
exist (with compatible labels) among the mapped nodes,ifi.

The basic building blocks afirRss are logical variables, which optionally can
include a (flat) set of variable properties, ordered pairgroperty labels and val-
ues. Figure 1 shows an excerpt from the hierarchies afigi} variable types,
(ii) variable properties, and (iii) predicate symbols. Bumserarchical organiza-
tion facilitates underspecification of the corresponditRs elements. We can now
say, for example, thatsubsumes both andx, or thate{TENSE tensed } subsumes
e{TENSE past}. Conversely, there is no subsumption between, sE§ENSE past }
ande{TENSE pres}.

Moving on to the level of individuakpPs, hg:_temp_loc_sp(eq, €1, Xg) Subsumes
ho:_at_p(eq, €1, Xg), and so does :_at_p(_, ey,). In the latter example, we use
the transfer-level wildcard operator (, an anonymous meta-variable) to indicate
uninstantiated arguments. MRS transfer supports ‘variable-arity’ relations (in
a technical sense), omitting such arguments (at least wdreex coding allows
it without ambiguity) would be equivalent, elgs:_at_p(_, e1), or—using explicit
role labels—hj:_at_p(ARG1 e1). In summaryMRS variables andps behave much
like (non-recursive, untyped) feature structures as degidne subsumption relation.

Examples (5) to (8) present a series of full, mat-mMRss. Let us ignore scopal
relations and handle constraints for the time being. Byresiten of EP subsump-
tion, (5) straightforwardly subsumes (7).

5Due to space constraints we do not elaborate on whikb elements should correspond to
nodes or edges in the graph analogy. In fact, multiple suels/are possible, often with equivalent
properties regarding the subsumption relation; see Fuitmder, Niehren, & Thater (2004) for a
candidate account.

"Remember thatps form an un-ordered multi-set, such that (7) could be reswlequivalently
as: {hg, { ho:_snow_n_1(xo) ho:_fresh_a_1(eo, Xo) }, { })-

The same holds between (6) and (7), though in a slightly nriezasting con-
figuration: here, the argument in thigesh_a_1 relation actually is an instantiated
variable &), distinct from the corresponding variable in (7). Howevapecial-
izing variables (when establishing a mapping of nodes batvwseb-graphs) can
extend beyond refining variable types; we can also equateiableawith another
one (assuming the types and variable properties are cdogatiThis latter step
corresponds to creating a new reentrancy in the graph, ageliose analogy to the
universe of feature structures.

(5) (hg, {hg:_fresh_a_1(_, xq), hg:_snow_n_1(x¢) }, { })
(6) (ho, {hg:_fresh_a_1(eq, X¢), hg:snow_n_1(x1) }, { })
(7) (ho, { hg:_fresh_a_1(eg, X¢), hg:-snow_n_1(xg) }, { })
(8) (ho, {ho:snown_1(xo) }, {})

It might seem intuitive to say thatrs (8) also subsumes (7): in terms of ‘infor-
mational content’, (7) clearly contains all the informatiof (8), plus additional
information provided by the extrap. When matching the left-hand side of a trans-
fer rule against the curremirs M;, however, this notion of partiality is already
built into the rewrite formalism. For a rule to fire, it is seffnt for it to match
part of M;, where extr&Ps in M; not aligned with any part of the rule will not be
effected by the application of the rule. Therefore, ouraotf MRS subsumption
is defined more narrowly: for two structures to stand in thessmption relation,
they need to have the same numbeEerdg. While still ignoring scope underspeci-
fication, this design decision means that underspecificagither applies ‘within’
one relation, or in the wagps are connected to each other (and the top handle).
Unfortunately, the graph containment analogy ftRS subsumption breaks
down once we take into account handle constraints; in griecithere can be
multiple distinct ways of scope underspecification invas, all describing fnk-
subsumingn the terminology of Copestake et al., 2005) the same setafes
resolved structures. This is in part because of the interebf handle constraints
and other, implicit wellformedness conditions BRSs, in part because the gen-
eral framework allows additional kinds of handle constrsimesides the ‘equality
modulo quantifiers’ relation €,’) discussed so far. In the general case, compar-
ing two MRss for subsumption would require one to fully resolve scopdenspec-
ification, i.e. ‘unfold’ each underspecified structure ithe corresponding set of
scope-resolvediRss (Copestake et al., 2005)n LocoN, transfer (and generation)

8The LocoN grammars, in fact, restrict themselves to osly handle constraints. Thus, if one
were to formally disallow other kinds of handle constrajntere would be a bounded maximum
number of possible handle constraints for a given strucamd the subsumption relation would be
computable, in principle, without enumerating all scopseived structures.

10

operate on semantic structures that leave scope ambgjuitiesolved—after all,
this is one of the main attractions miRS-like approaches to semantics for these
applications. We thus make a limiting assumption regardiagdle constraints,
viz. that (i) for twoMRss to stand in the subsumption relation, they need to have an
equal number of handle constraints, and that (ii) handlestcaimts are restricted
to just the=, kind. Combined with additional constraints imposed by tws
framework—that handle constraints always relate a hamdegument position to
one labeling arer—these assumptions mean that, for the purpose of tesiRgy
subsumption in transfer, there cannot be partiality of lewonstraints. Most
grammars with a semantics component basetR® make use of=, constraints

in a strongly codified manner, hence in practice divergematehis level are rare
(see Chapte?? for background).

With a notion ofMRS subsumption at hand, we can now defineuhiicationof
two MRSs, M7 and M5, as the most general structuté; that is subsumed by both
My and Ms. Unification fails when no such structure exists. Intuityvepeaking,
unification of twoMRss preserves all information from the input structures and
does not add any new information. Reusing our earlier exesnpiRrss (5) and
(6) have (7) as their unification. Conversely, (5) and (8) dounify. By default,
matching the left-hand side of a transfer riilgto the currentRs M; computes
the joint unification of theC andZ components ink; with M. Procedurally, this
actually is a sequence of two unifications, but conceptuhbiytotality ofC andZ
is treated as a single graph, such that one consistent s@tdifidgs (mapping of
graph nodes) is established.

It follows from how we defined subsumption that eaghin M; must unify
against exactly onerin C or Z, i.e. although we allow unification to equate dis-
tinct (meta-)variablesgP-level correspondences must be one-to-one (in Section 6
below, we will see other ways in whiagkps are treated as units with a somewhat
special status). Given the negative polarity of fiesomponent, it is relevant do
say whetherF is tried beforeor after C andZ matching. Parts of\/; compatible
with F might also matclt or Z, such that the rule blocking effect of/a specifi-
cation can depend on when it is evaluated. In practioepn transfer grammars
make very limited use afF conditions, and it was found most useful to test these
once all other left-hand side components of a transfer rale lbeen matched, i.e.
after bothC andZ.

9See ChapteP? for a discussion of related concepts in generation. Theraidest forMRS
equivalence (i.e. mutual subsumption) in th@ implementation actually ignored handle constraints
completely.

11

TOP h

LBL
INPUT RELS < PRED _bekk-n >

ARGO
HCONS list
[Top h

LBL
OUTPUT |RELS < PRED _creek_n_1 >
ARGO

HCONS list

Figure 2: Feature structure representation of a simplafieanule.

4 Typing in Transfer Grammars

Our firstMTR example (2) above may seem a surprisingly complex statersest
ing that it records the simple fact that the Norwegian nbekktranslates as ‘creek’
in English. First, recall that transfer itoGoN operates at the level of semantics;
in this and other chapters, we will typically discuss r@a$ of translational cor-
respondence in terms of semantic predicates (and theimemngps), rather than in
terms of words$? Second, and more importantly, there are large numbersr-tra
fer correspondences like the one exemplified in (2), eaclaciy the predicate
symbol while preserving the handle and inherent argumeohetlementary pred-
ication. For descriptive adequacy (and convenience),desrable to separate the
information about the generphttern of correspondendeom theactual instances
of that pattern.

For the purpose of statingeneralizationsover transfer rules, theoGoN ap-
proach builds on the successful experience in the HeacebriRhrase Structure
Grammar Apsq framework, and specifically the methodology that has esthbl
the creation of largeiPsGimplementations like theRaG (see Chapte?? for back-
ground). Abstractly similar to common techniques in obiénted software de-

10The vast majority of predicates in the semantics, of counseassociated to lexical units (words
or multi-word expressions), and the few predicates asttia grammatical processes (e.g. deriva-
tion or causativization) and constructions (e.g. compmdr coordination) tend to contribute more
abstract relations. However, many syntactic distinctiareeither bleached at the level of seman-
tics or only reflected indirectly. Adjectives and adverbswitk’ and ‘quickly’, for example—and
distinct verb frames related by diathesis alternationsptionality of complements often share a
common semantic predicate. As pointed out in Chap®already, we compose open-class predicate
names with suffixes liken or _v, but this is merely a notational convention to obtain a cstesit
top-level sense division.

12

velopment, our main tool in developing transfer grammarthésuse of (typed)
feature structuresrtéss) and multiple inheritance. Chapte®? introduced the cor-
respondence between thes andMRS universes. In a nutshell, Figure 2 presents
an alternate way of encoding the information of our firstéfanrule (example (2)
above)!!

We will discuss tha@Fsto MRS mapping in more detail shortly, but note how the
top-level features correspond to the individual compon@itMTRs (in this case,
7 and ©0). Comparing rule (2) and the feature structure of Figure Rleast if
judging by the amount of ink on the page—we have hardly irggddhe readability
of our example. The correspondence to ti#e universe, however, is relevant in
that it allows us to ‘piggyback’ on the general logic of typksditure structures,
whose mathematical and computational properties areulgbip studied (Rounds
& Kasper, 1986; Carpenter, 1992; inter alios).

Much in the way grammars like therG organize linguistic knowledge, we
can thus state the generalization over transfer rules Bke-feplacing the predi-
cate in plain one-place relations—as an abstract type. Heoptesent example, a
type nounmtr'? can be defined to correspond to the full feature structureigsf F
ure 2, with the exception of the specif#&ep values, i.e. the predicate symbols
proper. Assuming this type, we can reduce the actual trangke to a statement
like (9), where the conjunction operaton() simply means to combine (i.e. in-
herit) all constraints from the supertypeunmtr with the additional, ‘local'TFs
specification.

(9) nounmtr A

INPUT|RELS <[PRED _bekk_n}>

OUTPUT|RELS <[PRED _creek_n_1]>

Example (9) is relatively close to how transfer rules araiaty encoded in the
LOGON transfer grammars. Going back to the slightly more compianele (4)

above, (10) shows the actual source code of this rule—ppesimg the existence
of an abstract correspondence type+n_mtr for one (lexicalized) nominal rela-

HAlthough we make central use of types in setting up hierasthii.e. inheritance) relations
among relevant semantic configurations and parts of trangfes, the actual types at the leaf of the
hierarchy have no important bearing on the correspondenees elements. Hence we will at times
suppress type information (or features with irrelevantiga) in the presentation of feature structure
examples.

12The suffix_mtr (short for MRS transfer rule’) inLogon transfer grammars indicates the yield of
the type hierarchy, i.e. those correspondence types eegbbe instantiated by actual transfer rules.
Note that the information comprised in the typeunmtr may of course be further decomposed by
means of additional, more general, supertypes or even thefusultiple inheritance.

13

tion translating as a nominal compound. Note thatthg descriptions oMMRSs
encode the (logically) unordered multi-sets of elemengaiedications and handle
constraints KELS andHCONS in the TFSuniverse) as ordered lists, which makes it
possible to ‘overlay’ information on specific elements bgitional reference$?

(10) seter_nountain+pasture_n := n_n+n_mtr &
[INPUT. RELS < [PRED "_seter_n_rel"] >,
OQUTPUT. RELS < [PRED "_mountain_n_1_rel"],
[PRED " _pasture_n_1 rel™], ... >1.

TheLocon transfer component is built as an extension of the Linguikstiowledge
Builder (LkB; Copestake, 2002; see Chap®érfor background). Accordingly, the
specific syntax of (9) is that of the Type Definition Langua@®(f; Krieger &
Schafer, 1994), but by comparison to examples (9) and @eah should be rea-
sonably clear how to interpret this definitiéh.Comparing (10) to (4) now, it is
easier to see how the use of typed feature structures callifgithe specification

of transfer rules. Although there are relevant formal défeces®, type definitions
andTFsinheritance play a role (abstractly) similar to a macro ongate facility.
Our correspondence types capture general transfer régdardirect correspon-
dences and translational divergences alike—and for easthtgpe there can be a
potentially large number of specific instances, i.e. acirals with token predicate
symbols. Chapte??discusses our Norwegian — English transfer grammar in depth
but note that theoGon project arrived at about0 abstract correspondence types,
with a little over14, 000 transfer rule instances. Furthermore, the type hierarchy
makes it easy to enforce global wellformedness condititarsexample limiting

the range of admissible (object-level) variable types. (&.g, andx) and abstrac-
tions (, p, andu, say); enforcing that all relations have a handle (of tgpand
predicate (an atomic type, defined in the hierarchy); or tthaiquantifier-specific

BIn analogy to a common technique iPSG the feature structure formalism would allow the
introduction of position-independent references to saments of th&eLs andHcons lists, say
additional featuresieap andmoDIFIER for the two externally relevariPs in our compound exam-
ple. However, currentoGon transfer grammars have opted for the simpler order codinguoh
references, so far with no noticeable loss of generality.

“The ‘& here is theTDL conjunction operator, and “:=" merely is the syntax for diifims;
setermountain+pasturen is the identifier (or name) of this rule and is mainly releviantdebugging
purposes.

5The comparison betweerrs systems and the formalism assumed in Lexical FunctionainGra
mar (LFG; see Chapte??) is an interesting one, and th@sSGandLFG communities continue to hold
mutually incompatible beliefs on the formal differencesviEen the two (somewhat like the com-
munities of C"* and Lisp software developers, a cynic might saye assumes untyped structures
and instead of Fsinheritance makes heavy use of abbreviatory, parametenieeros. Macros can
be recursively defined in terms of other macros, even mylspl thus achieving effects similar to
multiple inheritance.

14

role labelsrsTrR andBopy (both with value typeh) can only occur in conjunction
with the inherent argument labekco (typed tox in the case of quantifiers).

Summing up our discussion of the&sto MRS correspondence so far, we em-
ploy typed feature structures descriptionsof transfer rules, which in turn really
are four-tuples of descriptions pfRss. 7DL is our description language for typed
feature structures, and thieslogic (including its rules of multiple inheritance and
TFswellformedness) implemented in thgB the primary means of generalization
over groups ofMTRs. The mapping from a typed feature structure tavms is
fairly straightforward and discussed in some detail by Gtglee et al. (2005) and
Chapter??. TheLocoN transfer formalism extends this correspondence to transfe
rules and their added descriptive devices (particularlyarvariables). Assume a
completeTFs like the most basic one of Figure 2, i.e. the structure compim-
formation inherited from supertypes with the rule-specifical specification. The
top-level structure has features,ut, ouTPuT (and optionallyCONTEXT and FIL-
TER). Each sub-structure below these features correspondsetars description,
with the added constraint that re-entrancies at certagldere interpreted as trans-
fer meta-variables (just like, ordinarilyrs re-entrancies are interpreted as logical
variables within on@Rrs). Possible positions for meta-variables correspond to the
basic units oMRS contents discussed in Section 3 above: For &cthese are (i)
the handle, (ii) the predicate, and (iii) any of the arguraémélues of role labels¥
Where therrFs contains additional information on these re-entrant nptiesstan-
dardTFsto MRS mapping rules apply. Such information could comprise aifipec
MRS variable typee, say, or constraints on variable properties {k&NsE past }.1

Finally, it is important to observe that thers to transfer rule conversion is
a compile-timeoperation. Once constructed from thews descriptions,MTRS
take the form sketched in Section 2 above, viz. as four-tupfepartial MRS de-
scriptions. AccordinglyMTR processing relies centrally on the notionsmrts
subsumption and unification defined in Section 3, indepenalietihe TFS type hi-
erarchy!8

18Although it should in principle, the current implementatidoesnot support transfer meta-
variables for variable properties, i.e. there is no direaywf creating anew object-level variable
in the © component of a transfer rule and let that variable take sefa@ble properties from left-
hand side matches of the rule. In practice, we have rarelgd@uch computation necessary, but
currentLOGON transfer grammars occasionally simulate the intendedteffeough a combination
of transfer-internakpPs and output overwriting; see Section 6 below.

17At the implementation level, meta-variables actually use same internal structure &S
object-level variables.

18The LocoN transfer component to date makes one exception to the $iepacé the TFS and
MRS universes: the hierarchical relations amongs variable types, values of variable properties,
and predicate symbols are represented as part of the sthndarype hierarchy (note that these
types, in all three cases, are atomic, i.e. cannot havenaitstructure). In principle, however, a good

15

5 Transfer Ambiguity and Rule Ordering

So far in this chapter we have hardly talked about transfestlambiguities or (the
closely related topic of) the order of processing in the rensystem. We defined
a transfer grammar assequencef MTRS, in other words there is a linear order-
ing to the rules. The order of transfer rulesLmcoN is determined simply by the
arrangement ofiTR descriptions in the source files comprising the transfemgra
mar. Thus, the transfer grammarian has complete contrdlr@sponsibility) over
the sequencing of rules; see Section 9 below for alterngimaphes to rule order-
ing. Assume a transfer grammar containingules (R, ..., R,); Ry will be the
first rule to be tried, followed byks, and so on. The rewrite process makes a single
pass through theTR sequence—never going back to earlier rules—and terminates
whenR,, has been processed. Whenever a Rildires, the currentirs M is re-
placed byl 1, reflecting the effects of invoking;; subsequent rule application
takesM ;4 as its input. Each rule can in principle apply more than otive orig-
inal input MRS may contain multiple occurrences of some piece of semaritics
example the relation associated to a preposition that caduwice in the original
source language utterance. Therefore, alehas fired, the rewrite process will
try R; again (on)M;; this time), and rewriting will only advance to rukg_; once
the left-hand side condition a&; (i.e. the totality of itsC, Z, and F components)
is no longer compatible with the curremRs. This has two logical consequences:
(i) rules generating output compatible with their own inprguirements can create
infinite rewrite cycles; and (ii) for a rul&; whose input condition occurs multiple
times in the currentRs, there can be multiple distinct ‘chains’ of applications of
R;. For this latter scenario, the rewrite process will explaitesuch sequences in
a pseudo-parallel search; where distinct chains of ingpkire same rule multiple
times arrive at equivalent results, these would presemt@miambiguities and are
thus ‘packed’ back into a single structdfeThis property of the rewrite process is
discussed further in Section 7 below.

It is of course quite common for an elementary predicatiora échunk’ of
connected semantic structure to have more than one possibiational equiva-
lence. Instantiating our basimunmtr correspondence type once again, examples
(11) and (12) show a pair of related transfer rules: both thkenominal relation

part of this specification should be globally hard-wired (bgMRs formalism), and another part be
imported from the Semantic Interfacese(-Is; see Chapte??) for the source and target language
grammars.

19For our example of multiple equivalent prepositional rielas (call themP;, and P), it would
likely not matter in which order theps are rewritten, i.e. whether the first applicatiodhfconsumed
Py or P,. However,R; could in principle be sensitive to both and P, for example as part of itS
or F components; for formal correctness, the rewrite procem®tbre needs to pursad possible
permutations of?; chains.

16

associated with Norwegidmageas their inputs, where (11) translates it as English
‘garden’ and (12) as ‘orchard’. This pair of rules demortsgaa frequent phe-
nomenon: the target language makes a lexicalized digiim¢tiat is not made (in
the same way) in the source language.

(11) nounmtrA (_,{-hagen}, {})-=> (_,{-gardenni1}, {})
(12) nounmtrA (_,{_hagen},{})— (_,{-orchardn1},{})

One-to-many transfer-level correspondences like thid gius rise to transfer am-
biguity, i.e. whenever a source languagfes contains the predicatdage_n, trans-
fer should yield (at least) two outpmirss. To allow such indeterminacy in transfer,
we need to augment our formalism. Without extra provisi@suaning the rules
were ordered like (11) and (12) above, the first rule will fireadl occurrences of
_hage_n and always consume its input specification, thus makingpiossible for
rule (12) to ever be invoked.

TheLocoN transfer formalism supports ambiguity of this kind by vétof op-
tional rewrite rules, indicated in (11) through the ne* operator. When rewrit-
ing comes to firing an optional ruleg (like (11) above) on the curremrs M,
the rewrite process forks into two parallel branches: oredn applies?’ in the
standard way and proceeds to tryiRj on M;1; the other branch skips ovét
and advances to trying; 1 on Mj.zo Each such fork in the rewrite process creates
the potential for multiple transfer outputs, where amMigsithat are independent
of each other can multiply across branches. Although it tSoronally required, it
makes sense to mark the last rule in a groug s with identical (or overlapping)
input requirements asbligatory. This ensures that the source language elements
in question are consumed eventually, i.e. it avoids crgdtiansfer branches with
‘left-over’ sL material.

Groups of relatediTRs need not exhibit such perfect parallelism as in exam-
ples (11) and (12). TherG analyzes (the literal sense of) ‘go’ as intransitive, i.e.
_go_v_1 is a one-place relation, whilavalk_v_1 constitutes a two-place relation.
But the Norwegiarga can be used either intransitively or transitively, and sfan
needs to make sure to properly match up arguments acrostatianal correspon-
dences. Rules (13) and (14) below differ in their input remmients: (13) uses the
special object-level variable tyge(an ‘anti-variable’) to prevent unification with
a relation that actually has an instantiated second argum&s English ‘walk’
also has an intransitive use, rule (13) is marked as optidmalthere will only be
transfer indeterminacy when the inpgé_v occurs as a one-place relatiéh.

2In case there were multiple ways of invokigf on M; (in the spirit of our earlier exam-
ple involving multiple occurrences of the same preposjtitinere will be as many parallel rewrite
branches, in addition to the one branch skipping over the rul

Z1section 6 below presents another way of achieving the safeetefiz. by changing the con-

17

(23) (_, {[hi}-gdv(Edl [Po} @)}, {})

(
2 (., {[h]--gov-1(€al o) }. { })

(14) (_, {[h1}:g&v(Eal Pl XD }, { })
— (., {[ha}:-walk v_1(€q], [Pg], Xa) }. { })

In a similar spirit, the pair of rules (15) and (16) have idealtZ specifications
(though only one of them hasCacomponent), but they differ substantially in their
outputs. The Norwegiahegeistreconveys variable degrees of effect, which these
transfer rules capture as either English ‘inspire’ or ‘filttventhusiasm’. The latter
is analyzed as a two-place relation with an additional wagdie set oEps, parallel
to aPPmodifier on its second argumettt.

(15) (_, {[hi}-begeistre_v(€q), [Po], K1) }, { })
— (_, {[h1}--inspirev_1(€a}, [Po] XD }. { })

(16) (., {[hof_@<aD}, {}):
(_, {[h1}:_begeistre v(€q), [Po], X1 }, { })

(,
[h1]: fill_v_cause((€q), [Po], X)),
2 | [hol_with_p(__, X1, X2)), __:udef q(Xz], [h2h,),
[hsl:enthusiasm_n_1(Xzx {NuM sg})
{lho] =, [z })

To summarize our discussion of rule ordering and ambigitishould by now
be clear that the correct sequencingMafrs is of central importance. Theo-
GoN transfer formalism shares this property with other resexs@nsitive rewrite
systems, and our approach is to let the transfer grammatéia complete con-
trol over the order of rules. As exemplified by multiple paifsexamples, among
groups ofMTRs with overlapping input requirements, optional rules nprstede
non-optional ones. Furthermore, rules with more speciftehand sides should
typically precede more general rules and specifically oamgeting the individual
parts of a complex input specification. Going back to ourieadxample (3), for

straints on input matching to subsumption (rather thaneatifn) for part of the rule left-hand side.

22Chapter?? discusses theIRS analysis of intersective modification (on argument in this
case, not the event of the relation as a whole): interseativdifiers generally take the index of
their modifee as the first argumemrG1) and identify its handle with their own handle (the latter
corresponding to logical conjunction Rs). Rule (16) makes use of itscomponent to gain access
to the correct handIéhg)), i.e. the underspecified context condition is there tobgemother variable
from the currenmRsS rather than to constrain applicability of the rule. No maitepredicate symbol,
theC element will need to unify with the relation introducing

18

the context condition on the cognate objettt_n to be effective, rule (3) must
be ordered prior to any rule that could consume the condlitippredicatetur_n.
LOGON transfer grammars approach the problem of rule sequengingdans of
breaking the transfer process into multiple phases, eacksponding to distinct
classes of rules. Complex rules like (3), for example, ader@d before purely
‘lexical’ ones, but after a set of rules that transfer (and tertain degree harmo-
nize) abstract, structural relations. Note that, exceptd) all examples so far can
be viewed as lexical, in that their left-hand sides only mierence to a single
specific source language predicate.

6 Fine Points of the Formalism

The preceding sections gave a semi-formal description ®fctire of theMRrs
rewrite facilities. The formalism presented this far aetaly reflects the origi-
nal design of theocon transfer facilities; however, over the course of aboutdhre
years—developing transfer grammars of increasing coritpléand other applica-
tions of MRS rewriting)—several extensions and one revision were miambest of
them to address specialized needs that we did not foredeglyniThe following
paragraph provide a quick overview of the most importanhsadd-ons.

Skolemization
Subsumption vs. Unification
Bulk Copying

Output Overwriting

Regular Expressions

Variable Property Mapping

19

7 Implementation Notes — Processing Efficiency
8 Developer Support

9 Related Work

10 Summary — Outlook

References

Carpenter, B. (1992)The logic of typed feature structure€ambridge, UK: Cambridge
University Press.

Copestake, A. (2002)Implementing typed feature structure grammagtanford, CA:
CSLI Publications.

Copestake, A., Flickinger, D., Pollard, C., & Sag, I. A. ()0 Minimal Recursion Se-
mantics. An introductionJournal of Research on Language and Computatig4),
281 -332.

Fuchss, R., Koller, A., Niehren, J., & Thater, S. (2004). Mial Recursion Semantics
as dominance constraints. Translation, evaluation, aatysis. InProceedings of the
42nd Meeting of the Association for Computational LingasstBarcelona, Spain.

Krieger, H.-U., & Schafer, U. (1994 DL — A type description language for constraint-
based grammars. IRroceedings of the 15th International Conference on Coayput
tional Linguistics(pp. 893 —899). Kyoto, Japan.

Rounds, W. C., & Kasper, R. T. (1986). A complete logical oals for record struc-
tures representing linguistic information. Rroceedings of the 15th Annual IEEE
Symposium on Logic in Computer Scien€ambridge, MA.

20

